Magnetic resonance elastography (MRE) is emerging as a new tool for studying viscoelastic changes in the brain resulting from functional processes. Here, we demonstrate a novel time series method to generate robust functional magnetic resonance elastography (fMRE) activation maps in response to a visual task with a flashing checkerboard stimulus. Using a single-shot spin-echo (SS-SE) pulse sequence, the underlying raw images inherently contain blood-oxygen-level dependent (BOLD) contrast, allowing simultaneous generation of functional magnetic resonance imaging (fMRI) activation maps from the magnitude and functional magnetic resonance elastography (fMRE) maps from the phase. This allows an accurate comparison of the spatially localized stiffness (fMRE) and BOLD (fMRI) changes within a single scan, eliminating confounds inherent in separately acquired scans. Results indicate that tissue stiffness within the visual cortex increases 6-11% with visual stimuli, whereas the BOLD signal change was 1-2%. Furthermore, the fMRE and fMRI activation maps have strong spatial overlap within the visual cortex, providing convincing evidence that fMRE is possible in the brain. However, the fMRE temporal SNR (tSNR) maps are heterogeneous across the brain. Using a dictionary matching approach to characterize the time series, the viscoelastic changes are consistent with a viscoelastic response function (VRF) time constant of 12.1 ​s ± 3.0 ​s for a first-order exponential decay, or a shape parameter of 8.1 ​s ± 1.4 ​s for a gamma-variate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7153752PMC
http://dx.doi.org/10.1016/j.neuroimage.2020.116592DOI Listing

Publication Analysis

Top Keywords

magnetic resonance
16
resonance elastography
12
functional magnetic
12
activation maps
12
viscoelastic changes
8
time series
8
elastography fmre
8
fmri activation
8
visual cortex
8
fmre
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!