Chlorinated paraffins (CPs), or polychlorinated n-alkanes, form a complex family of chemicals as they exist as mixtures of several thousands of isomers. To facilitate their classification, they are subdivided into short-chains (CC, SCCPs), medium-chains (CC, MCCPs), and long-chains (C, LCCPs) and further subdivided according to their chlorination degree. Until recently, the most common strategy implemented for their analysis was GC-ECNI-LRMS, with the main disadvantage being the high dependence of the response to the chlorination degree and the incapability of analysing LCCPs. In this work, we developed a method based on liquid chromatography coupled with electrospray ionisation-Orbitrap mass spectrometry (LC-ESI-HRMS) to expand the analysis capabilities of CPs. Although the different physico-chemical properties of CPs have led to compromises on the choice of analytical parameters, the addition of a mixture of DCM/ACN post-column with appropriate LC-ESI(-)-HRMS parameters enabled optimal and simultaneous detection of SCCPs, MCCPs and LCCPs from 10 to 36 carbons in one single injection. The combination of both the optimised LC-ESI parameters and the high resolution of the mass spectrometer (R = 140,000 @200 m/z) allowed separation of CPs signals of interest from unwanted halogenated ones, leading to minimum interferences in the detection. The optimised method was then successfully applied to the characterization of three types of vegetable oil, which were mostly contaminated with MCCPs. Additionally, the implementation of the LCHRMS strategy enabled the identification of highly chlorinated LCCPs in edible oil for the first time at dozens of ng g lw, which demonstrates the need of such comprehensive methods to expand the knowledge about CPs occurrence in food and environmental matrices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2020.460927 | DOI Listing |
Arch Toxicol
January 2025
Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 3, 16000, Prague, Czech Republic.
Chlorinated paraffins (CPs) are environmental pollutants extensively used in industries. While the use of short-chain chlorinated paraffins (SCCPs) has been restricted since 2017, the use of medium-chain chlorinated paraffins (MCCPs) has risen as their replacement. Due to lipophilic character, it can be expected that CPs enter the cells; however, the in vitro accumulation potential of CPs remains poorly understood.
View Article and Find Full Text PDFToxics
November 2024
Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China.
Short-chain chlorinated paraffins (SCCPs) are a persistent organic pollutant, and limited information is available on their bioaccumulation and trophic transfer, which would be affected by carbon chain length, chlorine content, and hydrophobicity. In this study, relevant data on SCCPs in water, sediments, and organisms collected from Laizhou Bay were analyzed to investigate the specific distribution of SCCPs and their bioaccumulation and trophic transfer. In water and sediments, the average SCCP concentrations (ΣSCCPs) were 362.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, 22012, Republic of Korea; Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon, 22012, Republic of Korea; Yellow Sea Research Institute, Incheon, 22012, Republic of Korea. Electronic address:
To determine the potentially detrimental impacts of short-chain chlorinated paraffins (SCCPs), we conducted assessments of acute effects on 96-h survival rate and biochemical markers, as well as chronic and multigenerational impacts on growth and reproduction over three generations in the marine mysid, Neomysis awatschensis. Dose-dependent increase of mortality was measured in both juvenile and adult mysids for 96 h. Exposure to the LC10 value (derived from the 96-h acute toxicity value) significantly reduced feeding activity in juveniles, accompanied by a significant elevation in oxidative stress and a reduction in acetylcholinesterase activity.
View Article and Find Full Text PDFChemosphere
January 2025
Swiss Federal Institute for Materials Science and Technology Empa, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, 8600, Dübendorf, Switzerland. Electronic address:
High production rates of chlorinated paraffins (CPs) and their widespread use resulted in a global contamination. Since 2017, short-chain CPs (SCCPs, C-C) are listed as persistent organic pollutants (POPs) in the Stockholm Convention. Technical CP mixtures contain hundreds of homologues and side products such as chlorinated olefins (COs), diolefins (CdiOs) and triolefins (CtriOs).
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha, Hunan 410013, China.
Humans may intake 0.02 mg/kg/day of short-chain chlorinated paraffins (SCCPs), and no study is available on mammalian ovarian damage caused by low-level SCCPs. In this study, four groups of 5-week-old female Institute of Cancer Research (ICR) mice were orally administered 0, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!