Nanotechnology-based RNA interference (RNAi) has shown great promise in overcoming the limitations of traditional clinical treatments for glioblastoma (GBM). However, because of the complexity of brain physiology, simple blood-brain barrier (BBB) penetration or tumor-targeting strategies cannot entirely meet the demanding requirements of different therapeutic delivery stages. Herein, we developed a charge conversional biomimetic nanoplatform with a three-layer core-shell structure to programmatically overcome persistent obstacles in siRNA delivery to GBM. The resulting nanocomplex presents good biocompatibility, prolonged blood circulation, high BBB transcytosis, effective tumor accumulation, and specific uptake by tumor cells in the brain. Moreover, red blood cell membrane (RBCm) disruption and effective siRNA release can be further triggered elegantly by charge conversion from negative to positive in the endo/lysosome (pH 5.0-6.5) of tumor cells, leading to highly potent target-gene silencing with a strong anti-GBM effect. Our study provides an intelligent biomimetic nanoplatform tailored for systemically siRNA delivery to GBM, leveraging Angiopep-2 peptide-modified, immune-free RBCm and charge conversional components. Improved therapeutic efficacy, higher survival rates, and minimized systemic side effects were achieved in orthotopic U87MG-luc human glioblastoma tumor-bearing nude mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.9b04683 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!