A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Injectable in Situ Forming Hydrogels of Thermosensitive Polypyrrole Nanoplatforms for Precisely Synergistic Photothermo-Chemotherapy. | LitMetric

Injectable in Situ Forming Hydrogels of Thermosensitive Polypyrrole Nanoplatforms for Precisely Synergistic Photothermo-Chemotherapy.

ACS Appl Mater Interfaces

National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology, 430074 , Wuhan , China.

Published: February 2020

The combination of photothermal therapy (PTT) with chemotherapy has great potential to maximize the synergistic effect of thermo-induced chemosensitization and improve treatment performance. To achieve high drug-loading capacity as well as precise synchronization between the controllable release of chemotherapeutics and the duration of near-infrared PTT, in this work, a facile one-step method was first developed to fabricate a novel injectable in situ forming photothermal modulated hydrogel drug delivery platform (D-PPy@PNAs), in which a PNIPAM-based temperature-sensitive acidic triblock polymer [poly(acrylic acid---isopropylamide--acrylic acid (PNA)] was utilized as the stabilizing agent in the polymerization of polypyrrole (PPy). The in situ forming hydrogels showed a sensitive temperature-responsive sol-gel phase-transition behavior, as well as an excellent photothermal property. The strong interaction of ionic bonds together with π-π stacking interactions resulted in high doxorubicin (DOX) loading capacity and controlled/sustained drug release behavior. In addition, D-PPy@PNAs also displayed enhanced cellular uptake and promoted intratumoral penetration of DOX upon NIR laser irradiation. The synergistic photothermal therapy-chemotherapy of D-PPy@PNA hydrogels greatly improved the antitumor efficacy in vivo. Therefore, thermosensitive polypyrrole-based D-PPy@PNA hydrogels may be powerful drug delivery nanoplatforms for precisely synergistic photothermo-chemotherapy of tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b22654DOI Listing

Publication Analysis

Top Keywords

situ forming
12
injectable situ
8
forming hydrogels
8
nanoplatforms precisely
8
precisely synergistic
8
synergistic photothermo-chemotherapy
8
drug delivery
8
d-ppy@pna hydrogels
8
hydrogels
4
hydrogels thermosensitive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!