The NF-KB pathway and endocrine therapy resistance in breast cancer.

Endocr Relat Cancer

Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of MVLS, University of Glasgow, Glasgow, UK

Published: May 2019

Breast cancer is a heterogeneous disease, which over time acquires various adaptive changes leading to more aggressive biological characteristics and development of treatment resistance. Several mechanisms of resistance have been established; however, due to the complexity of oestrogen receptor (ER) signalling and its crosstalk with other signalling networks, various areas still need to be investigated. This article focusses on the role of nuclear factor kappa B (NF-KB) as a key link between inflammation and cancer and addresses its emerging role as a key player in endocrine therapy resistance. Understanding the precise mechanism of NF-KB-driven endocrine therapy resistance provides a possible opportunity for therapeutic intervention.

Download full-text PDF

Source
http://dx.doi.org/10.1530/ERC-19-0087DOI Listing

Publication Analysis

Top Keywords

endocrine therapy
12
therapy resistance
12
breast cancer
8
resistance
5
nf-kb pathway
4
pathway endocrine
4
resistance breast
4
cancer breast
4
cancer heterogeneous
4
heterogeneous disease
4

Similar Publications

The word "cancer" evokes myriad emotions, ranging from fear and despair to hope and determination. Cancer is aptly defined as a complex and multifaceted group of diseases that has unapologetically led to the loss of countless lives and affected innumerable families across the globe. The battle with cancer is not only a physical battle, but also an emotional, as well as a psychological skirmish for patients and for their loved ones.

View Article and Find Full Text PDF

Advances in understanding the role of squalene epoxidase in cancer prognosis and resistance.

Mol Biol Rep

January 2025

Department of Orthopedic Surgery, Institute of Bone Tumor, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200092, China.

Recently, there has been burgeoning interest in the involvement of cholesterol metabolism in cancer. Squalene epoxidase (SQLE), as a critical rate-limiting enzyme in the cholesterol synthesis pathway, has garnered attention due to its overexpression in various cancer types, thereby significantly impacting tumor prognosis and resistance mechanisms. Firstly, SQLE contributes to unfavorable prognosis through diverse mechanisms, encompassing modulation of the PI3K/AKT signaling pathway, manipulation of the cancer microenvironment, and participation in ferroptosis.

View Article and Find Full Text PDF

Medullary thyroid cancer (MTC) is a frequently metastatic tumor of the thyroid that develops from the malignant transformation of C-cells. These tumors most commonly have activating mutations within the RET or RAS proto-oncogenes. Germline mutations within RET result in C-cell hyperplasia, and cause the MTC pre-disposition disorder, multiple endocrine neoplasia, type 2A (MEN2A).

View Article and Find Full Text PDF

Tumor-infiltrating lymphocytes (TILs) are a protective prognostic factor in several solid tumors and predict response to immune checkpoint inhibitor therapy. The prognostic impact of TILs in medullary thyroid cancer (MTC) is poorly understood. In this retrospective cohort study, we assessed the TILs profile of primary MTC tumors using the International TILs Working Group system and correlated this with clinicopathological prognostic variables, including the International Medullary Thyroid Cancer Grading System (IMTCGS) grade and survival outcomes.

View Article and Find Full Text PDF

Pheochromocytoma (PHEO) currently is considered to be malignant due to metastatic potential. One of the most common familial forms of PHEO is multiple endocrine neoplasia syndrome (MEN) type 2. The penetrance of PHEO in MEN2 syndrome is up to 50% of cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!