Sulfur-substituted DNA and RNA nucleobase derivatives (a.k.a., thiobases) are an important family of biomolecules. They are used as prodrugs and as chemotherapeutic agents in medical settings, and as photocrosslinker molecules in structural-biology applications. Remarkably, excitation of thiobases with ultraviolet to near-visible light results in the population of long-lived and reactive triplet states on a time scale of hundreds of femtoseconds and with near-unity yields. This efficient nonradiative decay pathway explains the vanishingly small fluorescence yields reported for the thiobases and the scarcity of fluorescence lifetimes in the literature. In this study, we report fluorescence lifetimes for twelve thiobase derivatives, both in aqueous solution at physiological pH and in acetonitrile. Excitation is performed at 267 and 362 nm, while fluorescence emission is detected at 380, 425, 450, 525, or 532 nm. All the investigated thiobases reveal fluorescence lifetimes that decay in a few hundreds of femtoseconds and with magnitudes that depend and are sensitive to the position and degree of sulfur-atom substitution and on the solvent environment. Interestingly, however, three thiopyrimidine derivatives (i.e., 2-thiocytidine, 2-thiouridine, and 4-thiothymidine) also exhibit a small amplitude fluorescence component of a few picoseconds in aqueous solution. Furthermore, the glycosylation of thiobases to form DNA or RNA nucleoside analogues is demonstrated as affecting their fluorescence lifetimes. In aqueous solution, the fluorescence decay signals exciting at 267 nm are equal or slower than those collected exciting at 362 nm. In acetonitrile, however, the fluorescence decay signals recorded upon 267 nm excitation are, in all cases, faster than those measured exciting at 362 nm. A comparison to the literature values show that, while both the DNA and RNA nucleobase and thiobase derivatives exhibit sub-picosecond fluorescence lifetimes, the ππ* excited-state population in the nucleobase monomers primarily decay back to the ground state, whereas it predominantly populates long-lived and reactive triplet states in thiobase monomers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037914PMC
http://dx.doi.org/10.3390/molecules25030584DOI Listing

Publication Analysis

Top Keywords

fluorescence lifetimes
20
dna rna
16
aqueous solution
12
fluorescence
11
sulfur-substituted dna
8
rna nucleobase
8
long-lived reactive
8
reactive triplet
8
triplet states
8
hundreds femtoseconds
8

Similar Publications

Background: Up to 23% of breast cancer patients recurred within a decade after trastuzumab treatment. Conversely, one trial found that patients with low HER2 expression and metastatic breast cancer had a positive response to trastuzumab-deruxtecan (T-Dxd). This indicates that relying solely on HER2 as a single diagnostic marker to predict the efficacy of anti-HER2 drugs is insufficient.

View Article and Find Full Text PDF

Inward rectifying potassium (Kir) channels play a critical role in maintaining the resting membrane potential and cellular homeostasis. The high-resolution crystal structure of homotetrameric KirBac1.1 in detergent micelles provides a snapshot of the closed state.

View Article and Find Full Text PDF

Pendant organic chromophores have been used to improve the photocatalytic performance of many metal-based photosensitizers, particularly in first-row metals, by increasing π conjugation in ligands and lowering the energy of the photoactive absorption band. Using a combination of spectroscopic studies and computational modeling, we rationalize the excited state dynamics of a Co(III) complex containing pendant pyrene moieties, , where = 1,1'-(4-(pyren-1-yl)pyridine-2,6-diyl)bis(3-methyl-1-imidazol-3-ium). displays higher visible absorptivity, and blue luminescence from pyrene singlet excited states compared with [ = 1,1'-(pyridine-2,6-diyl)bis(3-methyl-1-imidazol-3-ium)] in which the pyrene moiety is absent.

View Article and Find Full Text PDF

From synthesis to application, there are always certain interactions between the polar solvents and perovskite nanocrystals (NCs). To explain the effect of solvent polarity especially on the photoluminescence (PL) properties of NCs is highly desirable, especially for sensing applications. Herein We have synthesized the methylammonium lead mixed halides (MAPbClBr, where n = 0, 0.

View Article and Find Full Text PDF

Transferrin Modified Gold Nanoclusters-Based Biosensing Nanoplatform for High-Precision Multimodal Bioimaging of Tumor Cells.

Anal Chem

January 2025

Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.

Bioimaging technology has been broadly used in biomedicine, and the growth of multimodal imaging technology based on synergistic advantages can overcome the shortcomings of traditional single-modal bioimaging methods and attain high specificity and sensitivity in the fields of bioimaging and biosensing. The analysis of low-abundance microRNAs (miRNAs) in complex organisms is of high importance for early-stage diagnosis and clinical treatment of tumors. In our current study, a biosensing nanoplatform based on Tf-AuNCs and MnO nanosheets was developed for multimodal imaging of tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!