A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fine Modulation of the Catalytic Properties of Lipase Driven by Different Immobilization Strategies for the Selective Hydrolysis of Fish Oil. | LitMetric

Fine Modulation of the Catalytic Properties of Lipase Driven by Different Immobilization Strategies for the Selective Hydrolysis of Fish Oil.

Molecules

'Nanobiotechnology for Life Sciences' Group, Department of Chemistry in Pharmaceutical Sciences Dept., Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain.

Published: January 2020

Functional properties of each enzyme strictly depend on immobilization protocol used for linking enzyme and carrier. Different strategies were applied to prepare the immobilized derivatives of lipase (RML) and chemically aminated RML (NH-RML). Both RML and NH-RML forms were covalently immobilized on glyoxyl sepharose (Gx-RML and Gx-NH-RML), glyoxyl sepharose dithiothreitol (Gx-DTT-RML and Gx-DTT-NH-RML), activated sepharose with cyanogen bromide (CNBr-RML and CNBr-NH-RML) and heterofunctional epoxy support partially modified with iminodiacetic acid (epoxy-IDA-RML and epoxy-IDA-NH-RML). Immobilization varied from 11% up to 88% yields producing specific activities ranging from 0.5 up to 1.9 UI/mg. Great improvement in thermal stability for Gx-DTT-NH-RML and epoxy-IDA-NH-RML derivatives was obtained by retaining 49% and 37% of their initial activities at 70 °C, respectively. The regioselectivity of each derivative was also examined in hydrolysis of fish oil at three different conditions. All the derivatives were selective between cis-5,8,11,14,17-eicosapentaenoic acid (EPA) and cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) in favor of EPA. The highest selectivity (32.9 folds) was observed for epoxy-IDA-NH-RML derivative in the hydrolysis reaction performed at pH 5 and 4 °C. Recyclability study showed good capability of the immobilized biocatalysts to be used repeatedly, retaining 50-91% of their initial activities after five cycles of the reaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037125PMC
http://dx.doi.org/10.3390/molecules25030545DOI Listing

Publication Analysis

Top Keywords

hydrolysis fish
8
fish oil
8
rml nh-rml
8
glyoxyl sepharose
8
initial activities
8
fine modulation
4
modulation catalytic
4
catalytic properties
4
properties lipase
4
lipase driven
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!