Spontaneous senescence of cancer cells remains a puzzling and poorly understood phenomenon. Here we comprehensively characterize this process in primary epithelial ovarian cancer cells (pEOCs). Analysis of tumors from ovarian cancer patients showed an abundance of senescent cells in vivo. Further, serially passaged pEOCs become senescent after a few divisions. These senescent cultures display trace proliferation, high expression of senescence biomarkers (SA--Gal, -H2A.X), growth-arrest in the G phase, increased level of cyclins D1, D2, decreased cyclin B1, up-regulated p16, p21, and p53 proteins, eroded telomeres, reduced activity of telomerase, predominantly non-telomeric DNA damage, activated AKT, AP-1, and ERK1/2 signaling, diminished JNK, NF-B, and STAT3 pathways, increased formation of reactive oxygen species, unchanged activity of antioxidants, increased oxidative damage to DNA and proteins, and dysfunctional mitochondria. Moreover, pEOC senescence is inducible by normal peritoneal mesothelium, fibroblasts, and malignant ascites via the paracrine activity of GRO-1, HGF, and TGF-1. Collectively, pEOCs undergo spontaneous senescence in a mosaic, telomere-dependent and telomere-independent manner, plausibly in an oxidative stress-dependent mechanism. The process may also be activated by extracellular stimuli. The biological and clinical significance of pEOC senescence remains to be explored.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072138 | PMC |
http://dx.doi.org/10.3390/cancers12020296 | DOI Listing |
Clin Transl Med
January 2025
Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: Sporadic aortic aneurysm and dissection (AAD) is a critical condition characterised by the progressive loss of vascular smooth muscle cells (VSMCs) and the breakdown of the extracellular matrix. However, the molecular mechanisms responsible for the phenotypic switch and loss of VSMCs in AAD are not fully understood.
Methods And Results: In this study, we employed a discovery-driven, unbiased approach.
FEMS Microbiol Lett
December 2024
Department of Biophysics, Yeditepe University School of Medicine, Yeditepe University, Istanbul, Turkey.
Chronological lifespan (CLS) in budding yeast Saccharomyces cerevisiae, which is defined as the time nondividing cells in saturation remain viable, has been utilized as a model to study post-mitotic aging in mammalian cells. CLS is closely related to entry into and maintenance of a quiescent state. Many rearrangements that direct the quiescent state enhance the ability of cells to endure several types of stress.
View Article and Find Full Text PDFCNS Neurosci Ther
December 2024
Department of Radiology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China.
Background: Cognitive impairment is a common and feared characteristic of aging processes, and one key mechanism of cognition is hippocampal synaptic structure. Previous studies have reported that gut microbiota dysbiosis occurred in neurodegenerative diseases and other brain disorders with cognitive impairment. However, it is not clear how gender differences affect cognitive impairment in aging processes and whether they affect synaptic structure and gut microbiota.
View Article and Find Full Text PDFFood Funct
December 2024
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
Astaxanthin is a xanthophyll carotenoid which has been associated with a number of health-promoting effects, including anti-aging; however, the underlying mechanisms are not fully understood. In the present study, it was found that astaxanthin promoted the longevity of wild-type (N2) (). The lifespan-extending effect of astaxanthin was associated with a significant decrease of lipofuscin accumulation and the reduction of the age-related decline in spontaneous motility.
View Article and Find Full Text PDFJCI Insight
December 2024
Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, United States of America.
Hermansky-Pudlak syndrome (HPS) is a genetic disorder of endosomal protein trafficking associated with pulmonary fibrosis in specific subtypes, including HPS-1 and HPS-2. Single mutant HPS1 and HPS2 mice display increased fibrotic sensitivity while double mutant HPS1/2 mice exhibit spontaneous fibrosis with aging, which has been attributed to HPS mutations in alveolar epithelial type II (AT2) cells. We utilized HPS mouse models and human lung tissue to investigate mechanisms of AT2 cell dysfunction driving fibrotic remodeling in HPS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!