Al-air batteries are regarded as potential power source for flexible and wearable devices. However, the traditional cathodes of Al-air batteries are easy to be broken after continuous bending. This is why few Al-air batteries have been tested under the state of dynamic bending so far. Herein, carbon nanofibers incorporated with MnO catalyst have been prepared as bending-resistant cathodes through direct electrospinning. The cathode assembled in Al-air battery showed excellent electrochemical and mechanical stability. A high specific capacity of 1021 mAh/cm was achieved after bending 1000 times, which is 81.7% of that in platform state. This work will facilitate the progress of using Al-air battery in flexible electronics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074833PMC
http://dx.doi.org/10.3390/nano10020216DOI Listing

Publication Analysis

Top Keywords

al-air batteries
16
carbon nanofibers
8
nanofibers incorporated
8
incorporated mno
8
al-air battery
8
al-air
6
directly electrospun
4
electrospun carbon
4
mno nanoparticles
4
nanoparticles bending-resistant
4

Similar Publications

Aluminum-air batteries (AABs) are considered among high-power battery systems with various potential applications. However, the strong self-corrosion of Al in alkaline electrolytes negatively affects its Coulombic efficiency and significantly limits their large-scale application. This work presents the use of cetylpyridinium chloride (CPC) as an inexpensive and environmentally benign electrolyte additive in alkaline AABs.

View Article and Find Full Text PDF

Green interface optimization strategy based on allium mongolicum regel extract for enhanced alkaline Al-air battery performance.

J Colloid Interface Sci

December 2024

College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China. Electronic address:

Aqueous aluminum (Al)-air batteries (AABs) are gaining significant attention due to their excellent theoretical performance. However, the self-corrosion of the aluminum anode reduces anodic efficiency and battery capacity, limiting the broad commercial application of AABs. Herein, we propose the utilizing Allium Mongolicum Regel (AMR) extract as a green electrolyte additive to optimize the Al anode/electrolyte interface in alkaline AABs.

View Article and Find Full Text PDF

Mn Doping at High-Activity Octahedral Vacancies of γ-FeO for Oxygen Reduction Reaction Electrocatalysis in Metal-Air Batteries.

Angew Chem Int Ed Engl

December 2024

School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China.

γ-FeO with the intrinsic cation vacancies is an ideal substrate for heteroatom doping into the highly active octahedral sites in spinel oxide catalysts. However, it is still a challenge to confirm the vacancy location of γ-FeO through experiments and obtain enhanced catalytic performance by preferential occupation of octahedral sites for heteroatom doping. Here, a Mn-doped γ-FeO incorporated with carbon nanotubes catalyst was developed to successfully achieve preferential doping into highly active octahedral sites by employing γ-FeO as the precursor.

View Article and Find Full Text PDF

Herein, Cu single-atom-encapsulated hollow carbon-nitrogen spheres (CuSA@CNS) are fabricated through a solution process, confining optimal electronic structures reinforcing Cu-N active sites. CuSA@CNS demonstrate a remarkable half-wave potential of 0.95 V, mass activity, and a durability of 5000 cycles.

View Article and Find Full Text PDF

The catalytic film of a flexible Al-air battery is generally a brittle film formed by brushing a slurry onto the surface of carbon cloth. Fatigue bending can easily lead to cracking of the catalytic film and shedding of the active material. This study innovatively proposes a novel grid-structured catalytic layer prepared by electrohydrodynamic printing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!