Early detection of patients at risk for clinical deterioration is crucial for timely intervention. Traditional detection systems rely on a limited set of variables and are unable to predict the time of decline. We describe a machine learning model called MEWS++ that enables the identification of patients at risk of escalation of care or death six hours prior to the event. A retrospective single-center cohort study was conducted from July 2011 to July 2017 of adult (age > 18) inpatients excluding psychiatric, parturient, and hospice patients. Three machine learning models were trained and tested: random forest (RF), linear support vector machine, and logistic regression. We compared the models' performance to the traditional Modified Early Warning Score (MEWS) using sensitivity, specificity, and Area Under the Curve for Receiver Operating Characteristic (AUC-ROC) and Precision-Recall curves (AUC-PR). The primary outcome was escalation of care from a floor bed to an intensive care or step-down unit, or death, within 6 h. A total of 96,645 patients with 157,984 hospital encounters and 244,343 bed movements were included. Overall rate of escalation or death was 3.4%. The RF model had the best performance with sensitivity 81.6%, specificity 75.5%, AUC-ROC of 0.85, and AUC-PR of 0.37. Compared to traditional MEWS, sensitivity increased 37%, specificity increased 11%, and AUC-ROC increased 14%. This study found that using machine learning and readily available clinical data, clinical deterioration or death can be predicted 6 h prior to the event. The model we developed can warn of patient deterioration hours before the event, thus helping make timely clinical decisions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073544 | PMC |
http://dx.doi.org/10.3390/jcm9020343 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Geology and Mineral Science, Kwara State University, Malete, P.M.B. 1530, Ilorin, Kwara State, Nigeria.
Human-induced global warming, primarily attributed to the rise in atmospheric CO, poses a substantial risk to the survival of humanity. While most research focuses on predicting annual CO emissions, which are crucial for setting long-term emission mitigation targets, the precise prediction of daily CO emissions is equally vital for setting short-term targets. This study examines the performance of 14 models in predicting daily CO emissions data from 1/1/2022 to 30/9/2023 across the top four polluting regions (China, India, the USA, and the EU27&UK).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, No.39, Shierqiao Road, Jinniu District, Chengdu, Sichuan, China.
The present study analyzed the impact of age on the causes of death (CODs) in patients with nasopharyngeal carcinoma (NPC) undergoing chemoradiotherapy (CRT) using machine learning approaches. A total of 2841 patients (1037 classified as older, ≥ 60 years and 1804 as younger, < 60 years) were enrolled. Variations in the CODs between the two age groups were analyzed before and after applying inverse probability of treatment weighting (IPTW).
View Article and Find Full Text PDFNat Commun
January 2025
Bioinformatics and computational systems biology of cancer, Institut Curie, Inserm U900, PSL Research University, Paris, France.
Immunotherapy is improving the survival of patients with metastatic non-small cell lung cancer (NSCLC), yet reliable biomarkers are needed to identify responders prospectively and optimize patient care. In this study, we explore the benefits of multimodal approaches to predict immunotherapy outcome using multiple machine learning algorithms and integration strategies. We analyze baseline multimodal data from a cohort of 317 metastatic NSCLC patients treated with first-line immunotherapy, including positron emission tomography images, digitized pathological slides, bulk transcriptomic profiles, and clinical information.
View Article and Find Full Text PDFBreast Cancer Res
January 2025
School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK.
Recent evidence indicates that endocrine resistance in estrogen receptor-positive (ER+) breast cancer is closely correlated with phenotypic characteristics of epithelial-to-mesenchymal transition (EMT). Nonetheless, identifying tumor tissues with a mesenchymal phenotype remains challenging in clinical practice. In this study, we validated the correlation between EMT status and resistance to endocrine therapy in ER+ breast cancer from a transcriptomic perspective.
View Article and Find Full Text PDFArch Bronconeumol
December 2024
National Koranyi Institute of Pulmonology, Budapest, Hungary; Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary; Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!