Chitin biomass, a rich renewable resource, is the second most abundant natural polysaccharide after cellulose. Conversion of chitin biomass to high value-added chemicals can play a significant role in alleviating the global energy crisis and environmental pollution. In this review, the recent achievements in converting chitin biomass to high-value chemicals, such as 5-hydroxymethylfurfural (HMF), under different conditions using chitin, chitosan, glucosamine, and -acetylglucosamine as raw materials are summarized. Related research on pretreatment technology of chitin biomass is also discussed. New approaches for transformation of chitin biomass to HMF are also proposed. This review promotes the development of industrial technologies for degradation of chitin biomass and preparation of HMF. It also provides insight into a sustainable future in terms of renewable resources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036796 | PMC |
http://dx.doi.org/10.3390/molecules25030541 | DOI Listing |
Sensors (Basel)
January 2025
Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea.
This study presents the fabrication of a sustainable flexible humidity sensor utilizing chitosan derived from mealworm biomass as the primary sensing material. The chitosan-based humidity sensor was fabricated by casting chitosan and polyvinyl alcohol (PVA) films with interdigitated copper electrodes, forming a laminate composite suitable for real-time, resistive-type humidity detection. Comprehensive characterization of the chitosan film was performed using Fourier-transform infrared (FTIR) spectroscopy, contact angle measurements, and tensile testing, which confirmed its chemical structure, wettability, and mechanical stability.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
In order to the antifungal activity of chitosan (CS) and to obtain a better natural bio-antimicrobial agent, CS was modified with acrylpimaric acid (APA). The grafting sites of APA on CS were controlled by adjusting the reaction time and the ratio of reactants to obtain APA grafted with CS C-NH (NCSAA) and C-OH (CSAA). Intermediates to protect C-NH (PMCSAA) and final sample derivatives (PCSAA) were prepared using phthalic anhydride.
View Article and Find Full Text PDFInsect Sci
January 2025
Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China.
Respiration is a vital process essential for organism survival, with most terrestrial insects relying on a sophisticated tubular tracheal network. In the current study, a gene with repetitive sequence was identified within the silkworm genome. Designated as BmMuc91C, it contains a dozen repeated motifs "PSSSYGAPX" and "GGYSSGGX" in its sequence.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2025
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China.
Although traditional petroleum-based packaging materials pose environmental problems, biodegradable packaging materials have attracted extensive attention from research and industry for their environmentally friendly properties. Bio-based films, as an alternative to petroleum-based packaging films, demonstrate their significant advantages in terms of environmental friendliness and resource sustainability. This paper provides an insight into the development of biomass food packaging films such as cellulose, starch, chitosan, and gelatine, including their properties, methods of preparation (e.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Dpto. Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.
Background: Chitin is a crucial component of fungal cell walls and an effective elicitor of plant immunity; however, phytopathogenic fungi have developed virulence mechanisms to counteract the activation of this plant defensive response. In this study, the molecular mechanism of chitin-induced suppression through effectors involved in chitin deacetylases (CDAs) and their degradation (EWCAs) was investigated with the idea of developing novel dsRNA-biofungicides to control the cucurbit powdery mildew caused by Podosphaera xanthii.
Results: The molecular mechanisms associated with the silencing effect of the PxCDA and PxEWCAs genes were first studied through dsRNA cotyledon infiltration assays, which revealed a ≈80% reduction in fungal biomass and a 50% decrease in gene expression.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!