Optical fiber temperature sensor based on a Mach-Zehnder interferometer with single-mode-thin-core-single-mode fiber structure.

Rev Sci Instrum

Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.

Published: January 2020

A Mach-Zehnder interferometer for measurement of temperature is proposed and experimentally demonstrated, which consists of two sections of single mode fiber (SMF) and a section of thin core fiber spliced between the two SMFs. The two welding areas are heated and stretched to improve the split and recombination of light. The wavelength of the resonant dip will shift when temperature varies due to the thermo-optic and thermal expansion effect. The experimental results show that a temperature sensitivity of 65 pm/°C with a linear correlation coefficient of 0.996 can be achieved in a temperature range from 25 °C to 80 °C. Due to its ease of manufacture, low cost, and high sensitivity, the fiber optic temperature sensor is suitable for temperature measurement applications.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5128485DOI Listing

Publication Analysis

Top Keywords

temperature sensor
8
mach-zehnder interferometer
8
temperature
7
optical fiber
4
fiber temperature
4
sensor based
4
based mach-zehnder
4
interferometer single-mode-thin-core-single-mode
4
fiber
4
single-mode-thin-core-single-mode fiber
4

Similar Publications

Thermophysical properties of graphene reinforced with polymethyl methacrylate nanoparticles for technological applications: a molecular model.

J Mol Model

January 2025

Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.

Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).

View Article and Find Full Text PDF

A combined AFM/MS method was employed for protein registration in solution. This method is based on reversible specific capturing of a target protein from a large volume of analyzed solution onto a small sensor area of a chip with immobilized aptamer ligands. Fishing of the core antigen of hepatitis C virus (HCVcoreAg) from 10 M solution of this protein in buffer was carried out.

View Article and Find Full Text PDF

Thermoelectric porous laser-induced graphene-based strain-temperature decoupling and self-powered sensing.

Nat Commun

January 2025

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.

Despite rapid developments of wearable self-powered sensors, it is still elusive to decouple the simultaneously applied multiple input signals. Herein, we report the design and demonstration of stretchable thermoelectric porous graphene foam-based materials via facile laser scribing for self-powered decoupled strain and temperature sensing. The resulting sensor can accurately detect temperature with a resolution of 0.

View Article and Find Full Text PDF

Fabrication of TeNT/TeO heterojunction based sensor for ultrasensitive detection of NO.

J Hazard Mater

January 2025

School of Integrated Circuits, Dalian University of Technology, Dalian, Liaoning 116024, China. Electronic address:

Tellurium nanotubes (TeNT) heterojunction with Tellurium oxide (TeO) were prepared by in situ oxidation at elevated temperatures in air. The chemiresistive type NO sensor was then fabricated by depositing the synthesized TeNT/TeO on the integrated gold electrodes. The response of the TeNT/TeO based sensor to 600 ppb NO was 38.

View Article and Find Full Text PDF

Pressure and temperature sensing simultaneously and independently is crucial for creating electronic skin that replicates complex sensory functions of human skin. Thin-film transistor (TFT) arrays with sensors have enabled cross-talk-free spatial sensing. However, the thermal dependence of charge transport in semiconductors has resulted in interference between thermal and pressure stimuli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!