Despite the challenges, neutron resonance spin echo still holds the promise to improve upon neutron spin echo for the measurement of slow dynamics in materials. We present a bootstrap, radio frequency neutron spin flipper using high temperature superconducting technology capable of flipping neutron spin with either nonadiabatic or adiabatic modes. A frequency of 2 MHz has been achieved, which would achieve an effective field integral of 0.35 T m for a meter of separation in a neutron resonance spin echo spectrometer at the current device specifications. In bootstrap mode, the self-cancellation of Larmor phase aberrations can be achieved with the appropriate selection of the polarity of the gradient coils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5124681 | DOI Listing |
Adv Mater
January 2025
Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, P. R. China.
Li-ion and Na-ion batteries are promising systems for powering electric vehicles and grid storage. Layered 3d transition metal oxides ATMO (A = Li, Na; TM = 3d transition metals; 0 < x ≤ 2) have drawn extensive attention as cathode materials due to their exceptional energy densities. However, they suffer from several technical challenges caused by crystal structure degradation associated with TM ions migration, such as poor cycling stability, inferior rate capability, significant voltage hysteresis, and serious voltage decay.
View Article and Find Full Text PDFAppl Radiat Isot
January 2025
Reactor Design Group, IGCAR, Kalpakkam, 603102, India.
This study examines the impact of the Westcott g-factor on the concentration of elements like In, Ir, Re, Yb, Eu and Lu, measured using neutron capture reactions (n,γ), specifically focusing on those reactions, whose thermal neutron capture cross-sections (σ ) deviate from the conventional '1/v' behaviour. These measurements are quantified using k₀-based neutron activation analysis. The Westcott g-factor for the non-1/v nuclides was calculated using the characterized neutron temperature (T) at PFTS irradiation channel of KAMINI reactor.
View Article and Find Full Text PDFChem Sci
December 2024
College of Science, Engineering and Environment, University of Newcastle Callaghan NSW 2308 Australia.
The inductive effect is a central concept in chemistry and is often exemplified by the p values of acetic acid derivatives. The reduction in p is canonically attributed to the reduction in the electron density of the carboxylate group through the inductive effect. However, wave functional theory calculations presented herein reveal that the charge density of the carboxylate group is not explained by the inductive effect.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Physics, Kazan Federal University, 18 Kremlevskaya St., Kazan 420008, Russia.
The spectral characteristics of cyclosporin C (CsC) with the addition of Dy ions in acetonitrile (CDCN) and CsC with Dy incorporated into dodecylphosphocholine (DPC) micelle in deuterated water were investigated by high-resolution NMR spectroscopy. The study was focused on the interaction between Dy ions and CsC molecules in different environments. Using a combination of one-dimensional and two-dimensional NMR techniques, we obtained information on the spatial features of the peptide molecule and the interaction between CsC and the metal ion.
View Article and Find Full Text PDFbioRxiv
December 2024
Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
ASAP1 is a multidomain Arf GTPase-activating protein (ArfGAP) that catalyzes GTP hydrolysis on the small GTPase Arf1 and is implicated in cancer progression. The PH domain of ASAP1 enhances its activity greater than 7 orders of magnitude but the underlying mechanisms remain poorly understood. Here, we combined Nuclear Magnetic Resonance (NMR), Molecular Dynamic (MD) simulations and mathematical modeling of functional data to build a comprehensive structural-mechanistic model of the complex of Arf1 and the ASAP1 PH domain on a membrane surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!