Revealing interfacial structure and dynamics has been one of the essential thematic topics in material science and condensed matter physics. Synchrotron-based x-ray scattering techniques can deliver unique and insightful probing of interfacial structures and dynamics, in particular, in reflection geometries with higher surface and interfacial sensitivity than transmission geometries. We demonstrate the design and implementation of an in situ shearing x-ray measurement system, equipped with both inline parallel-plate and cone-and-plate shearing setups and operated at the advanced photon source at Argonne National Laboratory, to investigate the structures and dynamics of end-tethered polymers at the solid-liquid interface. With a precise lifting motor, a micrometer-scale gap can be produced by aligning two surfaces of a rotating upper shaft and a lower sample substrate. A torsional shear flow forms in the gap and applies tangential shear forces on the sample surface. The technical combination with nanoscale rheology and the utilization of in situ x-ray scattering allow us to gain fundamental insights into the complex dynamics in soft interfaces under shearing. In this work, we demonstrate the technical scope and experimental capability of the in situ shearing x-ray system through the measurements of charged polymers at both flat and curved interfaces upon shearing. Through the in situ shearing x-ray scattering experiments integrated with theoretical simulations, we aim to develop a detailed understanding of the short-range molecular structure and mesoscale ionic aggregate morphology, as well as ion transport and dynamics in soft interfaces, thereby providing fundamental insight into a long-standing challenge in ionic polymer brushes with a significant technological impact.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5129819DOI Listing

Publication Analysis

Top Keywords

situ shearing
16
shearing x-ray
16
structures dynamics
12
x-ray scattering
12
x-ray measurement
8
measurement system
8
solid-liquid interface
8
dynamics soft
8
soft interfaces
8
interfaces shearing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!