Cumulative ion confinement times are probed by measuring decaying ion current transients in pulsed material injection mode. The method is applied in a charge breeder and conventional ECRIS yielding mutually corroborative results. The cumulative confinement time estimates vary from approximately 2 ms-60 ms with a clear dependence on the ion charge-to-mass ratio-higher charges having longer residence times. The long cumulative confinement times are proposed as a partial explanation to recently observed unexpectedly high ion temperatures. The results are relevant for rare ion beam (RIB) production as the confinement time and the lifetime of stable isotopes can be used for estimating the extracted RIB production efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5128546 | DOI Listing |
Sci Rep
December 2024
Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran.
This study presents an innovative methane gas sensor design based on anti-resonant hollow-core fiber (AR-HCF) technology, optimized for high-precision detection at 3.3[Formula: see text]. Our numerical analysis explores the geometric optimization of the AR-HCF's structural parameters, incorporating real-world component specifications.
View Article and Find Full Text PDFTo address the challenges of performing in-situ tests on riverbed overburden gravel, this study employs three scaling methods-equal mass substitution, similar gradation, and the mixed method-to investigate the original gradation of the gravel. Large-scale triaxial consolidated drained shear tests were conducted to evaluate the effects of the maximum particle size reduction ratio (M) and confining pressure on the stress-strain behavior, fractal dimension, particle breakage, and the parameters of the Duncan-Chang model (an elastic model describing nonlinear stress-strain relationships). The study explores how scaling, based on fractal dimension and particle breakage rate, impacts the strength and deformation characteristics of gravel materials.
View Article and Find Full Text PDFNeurol Int
December 2024
Department of Neuroscience "Rita Levi Montalcini", University of Turin, 10126 Turin, Italy.
Background: Post-traumatic pseudomeningoceles are common findings after a brachial or lumbar plexus trauma, in particular after nerve root avulsion. Unlike meningoceles, pseudomeningoceles are CSF full-filled cysts confined by the paraspinous soft tissue, along the normal nerve course, in communication with the spinal subarachnoid spaces. Normally no more than a radiological finding at MRI, in rare instances they might be symptomatic due to their size or might constitute an obstacle during a reconstructive surgery.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Institute of Photonics and Nanotechnology, Faculty of Physics, Vilnius University, Saulėtekio Ave. 3, 10257 Vilnius, Lithuania.
We elaborate a method for determining the 0D-1D nanostructure size by photoluminescence (PL) emission spectrum dependence on the nanostructure dimensions. As observed, the high number of diamond-like carbon nanocones shows a strongly blue-shifted PL spectrum compared to the bulk material, allowing for the calculation of their top dimensions of 2.0 nm.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Huazhong University of Science and Technology, School of Chemistry and Chemical Engineering, Luoyu Road 1037, 430074, Wuhan, CHINA.
Low-iridium acid-stabilized electrocatalysts for efficient oxygen evolution reaction (OER) are crucial for the market deployment of proton exchange membrane (PEM) water electrolysis. Manipulating the in situ reconstruction of Ir-based catalysts with favorable kinetics is highly desirable but remains elusive. Herein, we propose an atomic ordering strategy to modulate the dynamic surface restructuring of catalysts to break the activity/stability trade-off.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!