A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sequential adaptation of perfusion and transport conditions significantly improves vascular construct recellularization and biomechanics. | LitMetric

AI Article Synopsis

  • Recellularization of scaffolds derived from ex vivo tissue is challenging due to small pore sizes, which limit cell distribution and movement within the scaffold.
  • A four-step culture method was tested on ex vivo-derived veins, initially seeding human smooth muscle cells and creating nutrient gradients to encourage migration, with variations in flow conditions over time.
  • Results showed that prolonged nutrient flow and transitioning to normal arterial pressure enhanced cell migration, better scaffold structure, and improved mechanical properties, leading to effective recellularization and better scaffold functionality.

Article Abstract

Recellularization of ex vivo-derived scaffolds remains a significant hurdle primarily due to the scaffolds subcellular pore size that restricts initial cell seeding to the scaffolds periphery and inhibits migration over time. With the aim to improve cell migration, repopulation, and graft mechanics, the effects of a four-step culture approach were assessed. Using an ex vivo-derived vein as a model scaffold, human smooth muscle cells were first seeded onto its ablumen (Step 1: 3 hr) and an aggressive 0-100% nutrient gradient (lumenal flow under hypotensive pressure) was created to initiate cell migration across the scaffold (Step 2: Day 0 to 19). The effects of a prolonged aggressive nutrient gradient created by this single lumenal flow was then compared with a dual flow (lumenal and ablumenal) in Step 3 (Day 20 to 30). Analyses showed that a single lumenal flow maintained for 30 days resulted in a higher proportion of cells migrating across the scaffold toward the vessel lumen (nutrient source), with improved distribution. In Step 4 (Day 31 to 45), the transition from hypotensive pressure (12/8 mmHg) to normotensive (arterial-like) pressure (120/80 mmHg) was assessed. It demonstrated that recellularized scaffolds exposed to arterial pressures have increased glycosaminoglycan deposition, physiological modulus, and Young's modulus. By using this stepwise conditioning, the challenging recellularization of a vein-based scaffold and its positive remodeling toward arterial biomechanics were obtained.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8487255PMC
http://dx.doi.org/10.1002/term.3015DOI Listing

Publication Analysis

Top Keywords

lumenal flow
12
step day
12
cell migration
8
nutrient gradient
8
hypotensive pressure
8
single lumenal
8
sequential adaptation
4
adaptation perfusion
4
perfusion transport
4
transport conditions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!