Tumor microenvironment (TME) is a dynamic ecosystem where fibroblasts are recruited in order to provide a niche to support growth and, in some extent, to promote therapeutic resistance. However, the role of fibroblasts in stimulating or impairing photodynamic therapy (PDT) outcome has not yet been fully addressed. PDT is based on interactions between light, oxygen and photosensitizer, leading to phototoxic reactions that culminate in cell death. In this study, we demonstrated the consequences of a hypoxic stromal phenotype on tumor mass for exploring PDT response. We mimicked TME complexity implementing colon cancer cells and fibroblasts 3D cultures called spheroids. Using hypoxia reporting lines, we verified that homotypic spheroids exhibited a size-dependent transcriptional HIF-1 activity. When cocultured, fibroblasts were localized in the hypoxic core. In homotypic stromal spheroids, the distribution of the endogenous photosensitizer PpIX was homogeneous while decreased in hypoxic areas of tumor 3D cultures. When monocultured, fibroblasts were more efficient to produce PpIX from its prodrug Me-ALA. Interestingly, the cross talk between cancer cells and fibroblasts attenuated PpIX accumulation and conferred tumor PDT resistance when compared to homotypic 3D cultures. Overall, our data suggest that stroma and tumor act in an integrated, reciprocal fashion which could ultimately influence on therapeutic response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/php.13220 | DOI Listing |
Acta Pharm Sin B
December 2024
Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
Reactive oxygen species (ROS)-responsive drug delivery systems (DDSs) have garnered significant attention in cancer research because of their potential for precise spatiotemporal drug release tailored to high ROS levels within tumors. Despite the challenges posed by ROS distribution heterogeneity and endogenous supply constraints, this review highlights the strategic alliance of ROS-responsive DDSs with photodynamic therapy (PDT), enabling selective drug delivery and leveraging PDT-induced ROS for enhanced therapeutic efficacy. This review delves into the biological importance of ROS in cancer progression and treatment.
View Article and Find Full Text PDFChemMedChem
January 2025
Université de Montpellier, IBMM UMR 5247 - Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293, Montpellier, FRANCE.
Tumor-associated human carbonic anhydrases (hCAs), particularly isoforms hCA IX and hCA XII, are overexpressed in hypoxic regions of solid tumors and play a crucial role in regulating pH homeostasis, promoting cancer cell survival and enhancing invasiveness. These enzymes have emerged as promising therapeutic targets in cancer treatment, including photothermal therapy (PTT). PTT is a minimally invasive technique that uses light-absorbing agents to convert near-infrared (NIR) light into heat, effectively inducing localized hyperthermia and promoting cancer cell apoptosis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
Photoactivatable metal complexes offer the prospect of novel drugs with low side effects and new mechanisms of action to combat resistance to current therapy. We highlight recent progress in the design of platinum, ruthenium, iridium, gold and other transition metal complexes, especially for applications as anticancer and anti-infective agents. In particular, understanding excited state chemistry related to identification of the bioactive species (excited state metallomics/pharmacophores) is important.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Laboratory Medicine, School of Chemical Science and Engineering, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, 200092, P. R. China.
The healing of bacterial biofilm-infected wounds is a complex process, and the construction of emerging therapeutic modalities that regulate the microenvironment to magnify therapeutic effects and reduce biotoxicity is still highly challenging. Herein, an engineered microneedle (MN) patch is reported to mediate the efficient delivery of black phosphorus nanosheets (BP NSs) and copper peroxide nanodots (CP NDs) for dual nanodynamic sterilization and methicillin-resistant staphylococcus aureus (MRSA)-infected wound healing. Results demonstrate that the system can eliminate biofilm, reduce cytotoxicity, promote angiogenesis and tissue regeneration by the multiple advantages of chemodynamic therapy (CDT), enhanced photodynamic therapy (PDT), and improved degradation process from BP NSs to phosphate for promoting cell proliferation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!