BACKGROUND The aim of this study was to explore the effects of NADPH oxidase 5 (NOX5) in high glucose-stimulated human glomerular mesangial cells (HMCs). MATERIAL AND METHODS Cells were cultured under normal glucose (NG) or high glucose (HG) conditions. Then, NOX5 siRNA was transfected into HG-treated HMCs. A Cell Counting Kit-8 assay, colony formation assay and 5-ethynyl-20-deoxyuridine (EDU) incorporation assay were applied to measure cell proliferative ability. In addition, the levels of oxidative stress factors including reactive oxygen species (ROS), malonaldehyde (MDA), NADPH, superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX), inflammatory cytokines including tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-6, IL-1ß, and monocyte chemoattractant protein-1 (MCP-1) in HMCs were detected by kits. Moreover, the expression of TLR4/NF-kappaB signaling and extracellular matrix (ECM) associated genes were evaluated by western blotting. RESULTS The results revealed that the NOX5 was overexpressed in HG-treated HMCs. Silencing of NOX5 decreased proliferation of HMCs induced by HG. And NOX5 silencing alleviated the production of MDA and NADPH accompanied by an increase of SOD and GSH-PX levels. Additionally, the contents of TNF-alpha, IL-6, IL-1ß, and MCP-1 were reduced after transfection with NOX5 siRNA. Furthermore, silencing of NOX5 deceased the expression of collagen I, collagen IV, TGF-ß1, and fibronectin induced by HG stimulation. TLR4, MyD88, and phospho-NF-kappaB p65 expression were downregulated notably in NOX5 silencing group. CONCLUSIONS Taken together, these findings demonstrated that inhibition of NOX5 attenuated HG-induced HMCs oxidative stress, inflammation, and ECM accumulation, suggesting that NOX5 may serve as a potential therapeutic target for diabetic nephropathy (DN) treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020764PMC
http://dx.doi.org/10.12659/MSM.919399DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
nox5
11
nadph oxidase
8
oxidase nox5
8
stress inflammation
8
extracellular matrix
8
human glomerular
8
glomerular mesangial
8
mesangial cells
8
nox5 sirna
8

Similar Publications

Activation of bone morphogenetic protein (BMP) 4 signaling promotes the survival of retinal ganglion cell (RGC) after acute injury. In this study, we investigated the role of the BMP4 signaling pathway in regulating the degeneration of retinal ganglion cells (RGCs) in a mouse glaucoma model and its potential application in retinal stem cell. Our results demonstrate that BMP4-GPX4 not only reduces oxidative stress and iron accumulation but also promotes neuroprotective factors that support the survival of transplanted RSCs into the host retina.

View Article and Find Full Text PDF

subverts the antioxidant defenses of its amoeba host .

Curr Res Microb Sci

January 2025

Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, France.

, the causative agent of Legionnaires' disease, interacts in the environment with free-living amoebae that serve as replicative niches for the bacteria. Among these amoebae, is a natural host in water networks and a model commonly used to study the interaction between and its host. However, certain crucial aspects of this interaction remain unclear.

View Article and Find Full Text PDF

Purpose: In vitro, oocyte development is susceptible to oxidative stress, which leads to endoplasmic reticulum (ER) stress. This study investigated whether the antioxidant melatonin attenuates ER stress and maintains oocyte-cumulus cell communication during the in vitro growth (IVG) of bovine oocytes.

Methods: Oocyte-granulosa cell complexes (OGCs) were harvested from slaughterhouse-derived ovaries and grown in vitro for 5 d at 38.

View Article and Find Full Text PDF

Introduction: Heavy metal soil pollution is a global issue that can be efficiently tackled through the process of phytoremediation. The use of rapeseed in the phytoremediation of heavy metal-contaminated agricultural land shows great potential. Nevertheless, its ability to tolerate heavy metal stress at the molecular level remains unclear.

View Article and Find Full Text PDF

Drought stress inhibits Bunge () seedling growth and yield. Here, we studied the effects of drought stress on the different parts of seedlings through physiological, transcriptomic, and metabolomics analyses, and identified key genes and metabolites related to drought tolerance. Physiological analysis showed that drought stress increased the accumulation of hydrogen peroxide (HO), enhanced the activity of peroxidase (POD), decreased the activity of catalase (CAT) and the contents of chlorophyll b and total chlorophyll, reduced the degree of photosynthesis, enhanced oxidative damage in seedlings, and inhibited the growth of plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!