The use of colloidal gold particles for locating cell surface components by scanning electron microscopy (SEM) has been restricted due to difficulties in the identification of these gold particles under SEM. It is shown here how the gold particles bound to cell surfaces can be located and identified under SEM using the secondary electron imaging (SEI) mode with an energy dispersive X-ray microanalyzer (EDS). This enables reliable identification of gold particles and good quality micrographs of the cells to be achieved at the same time. The distribution of receptors for two lectins, concanavalin A (ConA) and wheat germ agglutinin (WGA), on the surface of cultured Raji cells and human erythrocytes is presented as an example. Raji cells and erythrocytes were fixed with glutaraldehyde, post-fixed with a glutaraldehyde-tannic acid mixture and then incubated with ConA- or WGA-coated gold particles. After dehydration and critical point drying, the specimen filters were mounted on copper stubs and coated with carbon. The cells were examined on a JEOL TEMSCAN 100CX II electron microscope. The gold particles could be identified with the EDS analyzer, which was able to detect the Au spectrum when the electron beam was focused on single gold particles using a magnification of 100,000 or more. High-resolution photographs of the same cells were obtained up to the same magnification of 100,000.

Download full-text PDF

Source

Publication Analysis

Top Keywords

gold particles
32
gold
8
colloidal gold
8
particles
8
cell surface
8
scanning electron
8
electron microscope
8
energy dispersive
8
identification gold
8
raji cells
8

Similar Publications

In cardiovascular research, electromagnetic fields generated by Riga plates are utilized to study or manipulate blood flow dynamics, which is particularly crucial in developing treatments for conditions such as arterial plaque deposition and understanding blood behavior under varied flow conditions. This research predicts the flow patterns of blood enhanced with gold and maghemite nanoparticles (gold-maghemite/blood) in an electromagnetic microchannel influenced by Riga plates with a temperature gradient that decays exponentially, under sudden changes in pressure gradient. The flow modeling includes key physical influences like radiation heat emission and Darcy drag forces in porous media, with the flow mathematically represented through unsteady partial differential equations solved using the Laplace transform (LT) method.

View Article and Find Full Text PDF

Hydrogen sulfide (HS), the third endogenous gaseous molecule, plays a crucial role in biological signaling and metabolic processes. It has garnered significant attention from researchers in the field of biochemistry. The highly sensitive detection of HS is essential for elucidating its functions and has long been a key objective in biochemical sensing.

View Article and Find Full Text PDF

Antimicrobial and Antibiofilm Activities of Urinary Catheter Incorporated with ZnO-Carbon Nanotube.

ACS Appl Bio Mater

January 2025

College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50832, Republic of Korea.

Urinary tract infections are among the most common nosocomial infections, with the majority being catheter-associated urinary tract infections (CAUTIs). This study demonstrated that an antimicrobial and antibiofilm urinary catheter containing zinc oxide-carbon nanotubes (ZnO-CNT) can inhibit CAUTIs in patients. ZnO-CNT polymers were synthesized by mixing ZnO and CNT using a high-shear mixer, and the synthesized ZnO-CNT polymers were incorporated into a silicone matrix to produce a ZnO-CNT urinary catheter.

View Article and Find Full Text PDF

Identification of microorganisms at different times in a bioleaching process for the recovery of gold and silver from minerals in oxide form.

Heliyon

January 2025

Department of Chemical and Biochemical Engineering, National Technological Institute of Mexico (TecNM), Durango Institute of Technology (ITD), Felipe Pescador 1830 Ote. Col, Nueva Vizcaya, Durango, Dgo, 34080, Mexico.

In this study, gold and silver were recovered through a bioleaching process conducted at room temperature over 11 days. Native bacteria and varying ratios of mineral pulp to culture medium (20/80, 37.5/62.

View Article and Find Full Text PDF

Gold nanoparticles are widely used in biomedical applications due to their unique properties. However, traditional synthesis methods generate contaminants that cause cytotoxicity and compromise the biocompatibility of the nanomaterials. Therefore, green synthesis methods are essential to produce pure and biocompatible nanoparticles, ensuring their effectiveness in biomedical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!