A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploiting Web Images for Multi-Output Classification: From Category to Subcategories. | LitMetric

Studies present that dividing categories into subcategories contributes to better image classification. Existing image subcategorization works relying on expert knowledge and labeled images are both time-consuming and labor-intensive. In this article, we propose to select and subsequently classify images into categories and subcategories. Specifically, we first obtain a list of candidate subcategory labels from untagged corpora. Then, we purify these subcategory labels through calculating the relevance to the target category. To suppress the search error and noisy subcategory label-induced outlier images, we formulate outlier images removing and the optimal classification models learning as a unified problem to jointly learn multiple classifiers, where the classifier for a category is obtained by combining multiple subcategory classifiers. Compared with the existing subcategorization works, our approach eliminates the dependence on expert knowledge and labeled images. Extensive experiments on image categorization and subcategorization demonstrate the superiority of our proposed approach.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2020.2966644DOI Listing

Publication Analysis

Top Keywords

categories subcategories
8
subcategorization works
8
expert knowledge
8
knowledge labeled
8
labeled images
8
subcategory labels
8
outlier images
8
images
6
exploiting web
4
web images
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!