Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: The aim of this study was to investigate the effects of eupatilin on protein kinase D1 (PKD1) and nuclear factor kappa B (NF-κB) signaling pathways in cerulein-induced in vitro pancreatitis.
Methods: We used collagenase digestion to isolate pancreatic acinar cells from male C57BL/6 mice. In vitro acute pancreatitis was induced by treatment with a supramaximal dose of cerulein. Eupatilin was pretreated before stimulation with cerulein.
Results: Eupatilin significantly reduced cerulein-induced amylase release in pancreatic acini. Eupatilin treatment downregulated cerulein-induced expression of interleukin (IL)-1β, IL-6, and CC chemokine ligands 2 and 5, but it upregulated expression of IL-4 and IL-10. We demonstrated that eupatilin pretreatment attenuated cerulein-induced necrosis in isolated pancreatic acinar cells. This effect of eupatilin was confirmed by lactic dehydrogenase assay, fluorescence-activated cell sorting analysis, and cytopathologic analysis. Eupatilin inhibited cerulein-induced activation of PKD1/NF-κB and the nuclear translocation of NF-κB.
Conclusions: Our data demonstrated that eupatilin is a potential therapeutic candidate for the treatment of pancreatitis through its ability to reduce cellular necrosis and inflammatory responses by inhibition of the PKD1/NF-κB signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MPA.0000000000001488 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!