: Mortality due to sepsis is still prevalent, peaking at extreme ages of life including infancy. Despite many efforts, the peculiarity of the infant immune system has limited further advances in its treatment. Indeed, neonates experience a dramatic physiological transition from immune tolerance to the maternal antigens to functional maturity. Such a transition is extremely dynamic, as is the pathophysiology of infant sepsis, which is dependent on many infant, maternal, and environmental factors.: In this review, the authors critically update and summarize the current paradigm of immunomodulation in infant sepsis. They confirm how exogenous stimulation of the immune system through intravenous immunoglobulin, colony stimulating factors, and granulocyte transfusion have failed to impact on the prognosis of infant sepsis. They also strongly support the beneficial effects of supplementation/replacement therapies with products naturally contained within maternal milk as well as antioxidant compounds.: Breastfeeding is beneficial against sepsis. Knowledge of the neonatal immune system is indeed too limited to effectively strengthen immune response by exogenous interventions, especially in preterm and low-birth-weight infants. Awareness of this limitation should pave the way for future studies (e.g. gender- and -based) aimed at better characterizing the infant immune system and promoting a more tailored approach.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14656566.2020.1721464DOI Listing

Publication Analysis

Top Keywords

immune system
16
infant sepsis
12
infant immune
8
system limited
8
sepsis
6
infant
6
immune
6
current emerging
4
emerging treatments
4
treatments neonatal
4

Similar Publications

Unlabelled: The intestinal barrier is a complex interface of the human body, possessing the largest contact surface to nutrients and antigens and containing a major part of the immune system. It has to deal with continuous exposure to a broad mixture of essential, harmful, or useless substances and particles. In the context of plastic pollution and the ubiquitous occurrence of micro- and nanoplastics, oral exposure to such particles is of particular interest.

View Article and Find Full Text PDF

Gut microbiota, immunity, and bile acid metabolism: decoding metabolic disease interactions.

Life Metab

December 2023

Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China.

In recent decades, the global prevalence of metabolic syndrome has surged, posing a significant public health challenge. Metabolic disorders, encompassing diabetes, obesity, nonalcoholic fatty liver disease, and polycystic ovarian syndrome, have been linked to alterations in the gut microbiota. Nonetheless, the connection between gut microbiota and host metabolic diseases warrants further investigation.

View Article and Find Full Text PDF

The fate mapping technique is essential for understanding how cells differentiate and organize into complex structures. Various methods are used in fate mapping, including dye injections, genetic labeling (e.g.

View Article and Find Full Text PDF

Background: Epidemiological investigations have revealed a significant association between alcohol consumption and chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). Nevertheless, the potential mechanisms are still inadequately revealed. This research aimed to investigate the impact of alcohol on CP/CPPS using an animal model and to elucidate the underlying mechanisms.

View Article and Find Full Text PDF

The immune landscape of fetal chorionic villous tissue in term placenta.

Front Immunol

January 2025

Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, United States.

Introduction: The immune compartment within fetal chorionic villi is comprised of fetal Hofbauer cells (HBC) and invading placenta-associated maternal monocytes and macrophages (PAMM). Recent studies have characterized the transcriptional profile of the first trimester (T1) placenta; however, the phenotypic and functional diversity of chorionic villous immune cells at term (T3) remain poorly understood.

Methods: To address this knowledge gap, immune cells from human chorionic villous tissues obtained from full-term, uncomplicated pregnancies were deeply phenotyped using a combination of flow cytometry, single-cell RNA sequencing (scRNA-seq, CITE-seq) and chromatin accessibility profiling (snATAC-seq).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!