Excitation-energy transfer in photosystem I (PSI) is changed by a cation formation of a special pair chlorophyll P700 in the PSI core; however, it remains unclear how light-harvesting pigment-protein complexes are involved in the P700-related energy-transfer mechanisms. Here, we report effects of the redox changes of P700 on excitation-energy dynamics in diatom PSI-fucoxanthin chlorophyll /-binding protein (PSI-FCPI) and PSI core complexes by means of time-resolved fluorescence (TRF) spectroscopy. For the TRF measurements, the PSI-FCPI and PSI were adapted under P700 neutral and cation conditions using chemical reagents. Upon the P700 formation, fluorescence decay-associated (FDA) spectra constructed from the TRF spectra exhibit a larger fluorescence decay amplitude relative to a fluorescence rise magnitude within 100 ps in each of the PSI-FCPI and PSI. The decay components are shifted to lower wavelengths in each of the P700-cation PSI-FCPI and PSI than in the P700-neutral PSIs. The rapid fluorescence decays upon the P700 formation are clearly verified by mean lifetimes reconstructed from the FDA spectra. Because the P700-cation PSI does not cause charge-separation reactions, the relatively strong decay components and rapid fluorescence decays observed are likely attributed to excitation-energy quenching. These observations suggest that chlorophylls in PSI and around/within FCPI are involved in the energy-quenching events by the redox changes of P700.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.0c00715DOI Listing

Publication Analysis

Top Keywords

psi-fcpi psi
16
excitation-energy transfer
8
cation formation
8
psi
8
psi core
8
redox changes
8
changes p700
8
p700 formation
8
fda spectra
8
decay components
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!