Advancements in the field of nanotechnology have resulted in the emergence of a large variety of engineered nanomaterials for innumerable applications. Despite the ubiquitous use of nanomaterials in daily life, concerns regarding the potential toxicity and safety of these materials have also been raised. There is a high demand for assessing the unwanted effects of both gold and silver nanoparticles, which is increasingly being used in biomedical applications. This paper deals with the study of stress due to silver and gold nanoparticles of varying size on red blood cells (RBCs) using Raman tweezers spectroscopy. RBCs were incubated with nanoparticles of size in the 10-100 nm range with the same concentrations, and micro-Raman spectra were recorded by optically trapping the nanoparticle-treated live RBCs. Spectral modifications implicating hemoglobin deoxygenation were observed in all nanoparticle-treated RBCs. One of the probable reason for the deoxygenation trend can be the adhesion of nanoparticles onto the cell surface causing imbalance in cell functioning. Moreover, the higher spectral variations observed for silver nanoparticles indicate that oxidative stress is involved in cell damage. These mechanisms lead to the modification in the hemoglobin structure because of changes in the pH of cytoplasm, which can be detected using Raman spectroscopy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6990426PMC
http://dx.doi.org/10.1021/acsomega.9b02988DOI Listing

Publication Analysis

Top Keywords

silver gold
8
red blood
8
blood cells
8
silver nanoparticles
8
nanoparticles
5
probing nanoparticle-cell
4
nanoparticle-cell interaction
4
interaction micro-raman
4
micro-raman spectroscopy
4
silver
4

Similar Publications

Nanogap-Assisted SERS/PCR Biosensor Coupled Machine Learning for the Direct Sensing of in Food.

J Agric Food Chem

January 2025

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.

() is the primary risk factor in food safety. Herein, a nanogap-assisted surface-enhanced Raman scattering/polymerase chain reaction (SERS/PCR) biosensor coupled with a machine-learning tool was developed for the direct and specific sensing of S. aureus in milk.

View Article and Find Full Text PDF

Two-dimensional (2D) hexagonal boron nitride (hBN) has garnered significant attention due to its exceptional thermal and chemical stability, excellent dielectric properties, and unique optical characteristics, making it widely used in deep ultraviolet (DUV) applications. However, the integration of hBN with plasmonic materials in the visible region (532 nm) has not been fully explored, particularly in terms of morphology regulation and size control of mono- and bimetallic nanoparticles (BMNPs) namely gold (Au), silver (Ag) and Au-Ag. A Schottky junction-based metal-semiconductor contact configuration is employed to achieve hot-carrier reflections on the metal side, enhancing the quantum efficiency of the photodetector.

View Article and Find Full Text PDF

In this paper, we propose and theoretically investigate a novel multimode refractive index (MMRI) plasmonic optical sensor for detecting various brain cancer cells, leveraging the unique capabilities of split ring resonators (SRRs). The sensor, simulated using the finite-difference time-domain (FDTD) method, exhibits dual resonance modes in its reflection spectrum within the 1500 nm to 3500 nm wavelength range, marking a significant advancement in multimode plasmonic biosensing. Through detailed parametric analysis, we optimize critical dimensional parameters to achieve superior performance.

View Article and Find Full Text PDF

Electrical resistivity in good metals, particularly noble metals such as gold (Au), silver (Ag), or copper, increases linearly with temperature (T) for T > Θ, where Θ is the Debye temperature. This is because the coupling (λ) between the electrons and the lattice vibrations, or phonons, in these metals is weak, with λ ~ 0.1-0.

View Article and Find Full Text PDF

Recent Applications of Pillararene-Inspired Water-Soluble Hosts.

Chemistry

January 2025

Shanghai University, Chemistry, 99 Shang-da Road, 200444, Shanghai, CHINA.

Pillararenes and their derivatives have emerged in supramolecular chemistry as unique macrocycles for applications in host-guest chemistry, materials science and biomimetics. Many variations have been conceived and synthesized in recent years and in this review, we relate progress in water-soluble versions: leaning towerarenes, extended-pillararenes, biphenarenes, helicarenes and octopusarenes. These are applied in targeted drug delivery, selective uptake and release of aromatic guests, fabrication of gold/silver and mesoporous silica nanoparticles, cell imaging, pollutant separation, biomedicine (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!