Breast cancer is the most common cancer in women, but few biomarkers are effective in clinic. Previous studies have shown the important roles of non-coding RNAs in diagnosis, prognosis, and therapy selection for breast cancer and have suggested the significance of integrating molecules at different levels to interpret the mechanism of breast cancer. Here, we collected transcriptome data including long non-coding RNA (lncRNA), microRNA (miRNA), and mRNA for ~1,200 samples, including 1079 invasive breast carcinoma samples and 104 normal samples, from The Cancer Genome Atlas (TCGA) project. We identified differentially expressed lncRNAs, miRNAs, and mRNAs that distinguished invasive carcinoma samples from normal samples. We further constructed an integrated dysregulated network consisting of differentially expressed lncRNAs, miRNAs, and mRNAs and found housekeeping and cancer-related functions. Moreover, 58 RNA binding proteins (RBPs) involved in biological processes that are essential to maintain cell survival were found in the dysregulated network, and 10 were correlated with overall survival. In addition, we identified two modules that stratify patients into high- and low-risk subgroups. The expression patterns of these two modules were significantly different in invasive carcinoma versus normal samples, and some molecules were high-confidence biomarkers of breast cancer. Together, these data demonstrated an important clinical application for improving outcome prediction for invasive breast cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6975227PMC
http://dx.doi.org/10.3389/fgene.2019.01284DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
invasive breast
12
normal samples
12
rna binding
8
binding proteins
8
breast carcinoma
8
carcinoma samples
8
differentially expressed
8
expressed lncrnas
8
lncrnas mirnas
8

Similar Publications

Introduction: To target psychological support to cancer patients most in need of support, screening for psychological distress has been advocated and, in some settings, also implemented. Still, no prior studies have examined the appropriate 'dosage' and whether screening for distress before cancer treatment may be sufficient or if further screenings during treatment are necessary. We examined the development in symptom trajectories for breast cancer patients with low distress before surgery and explored potential risk factors for developing burdensome symptoms at a later point in time.

View Article and Find Full Text PDF

Omega-3 fatty acids: molecular weapons against chemoresistance in breast cancer.

Cell Mol Biol Lett

January 2025

Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy.

Breast cancer is the most commonly diagnosed type of cancer and the leading cause of cancer-related death in women worldwide. Highly targeted therapies have been developed for different subtypes of breast cancer, including hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, triple-negative breast cancer (TNBC) and metastatic breast cancer disease are primarily treated with chemotherapy, which improves disease-free and overall survival, but does not offer a curative solution for these aggressive forms of breast cancer.

View Article and Find Full Text PDF

Nowadays, chemotherapy and immunotherapy remain the major treatment strategies for Triple-Negative Breast Cancer (TNBC). Identifying biomarkers to pre-select and subclassify TNBC patients with distinct chemotherapy responses is essential. In the current study, we performed an unbiased Reverse Phase Protein Array (RPPA) on TNBC cells treated with chemotherapy compounds and found a leading significant increase of phosphor-AURKA/B/C, AURKA, AURKB, and PLK1, which fall into the mitotic kinase group.

View Article and Find Full Text PDF

The aim of the study is to analyze the relationship between personality traits of women with hereditary predisposition to breast/ovarian cancer and their obstetric history and cancer-preventive behaviors. A total of 357 women, participants of 'The National Program for Families With Genetic/Familial High Risk for Cancer', were included in the study. The Neo Five-Factor Inventory (NEO-FFI) and a standardized original questionnaire designed for the purpose of the study were used.

View Article and Find Full Text PDF

Breast cancer is one of the most aggressive types of cancer, and its early diagnosis is crucial for reducing mortality rates and ensuring timely treatment. Computer-aided diagnosis systems provide automated mammography image processing, interpretation, and grading. However, since the currently existing methods suffer from such issues as overfitting, lack of adaptability, and dependence on massive annotated datasets, the present work introduces a hybrid approach to enhance breast cancer classification accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!