Little attention is paid to pseudogenes from the highly polymorphic HLA genetic region. The pseudogene is defined as a non-functional gene because it is deleted at different frequencies in humans and because it encodes a potentially non-functional truncated protein. However, different studies have shown HLA-H transcriptional activity. We formerly identified 13 novel alleles, including the * allele, which reaches 19.6% in East Asian populations and encodes a full-length HLA protein. The aims of this study were to explore the expression and possible function of the HLA-H molecule. HLA-H may act as a transmembrane molecule and/or indirectly via its signal peptide by mobilizing HLA-E to the cell surface. We analyzed RNA expression in Peripheral Blood Mononuclear Cells (PBMC), Human Bronchial Epithelial Cells (HBEC), and available RNA sequencing data from lymphoblastoid cell lines, and we looked to see whether HLA-E was mobilized at the cell surface by the HLA-H signal peptide. Our data confirmed that is transcribed at similar levels to . We characterized a hemizygous effect in expression, and expression differed according to alleles; most interestingly, the * allele had the highest level of mRNA expression. We showed that HLA-H signal peptide incubation mobilized HLA-E molecules at the cell surface of T-Lymphocytes, monocytes, B-Lymphocytes, and primary epithelial cells. Our results suggest that HLA-H may be functional but raises many biological issues that need to be addressed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6978722 | PMC |
http://dx.doi.org/10.3389/fimmu.2019.02986 | DOI Listing |
J Cell Biol
February 2025
Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, USA.
Tubulin polyglutamylation is essential for maintaining cilium stability and function, and defective tubulin polyglutamylation is associated with ciliopathies. However, the regulatory mechanism underlying proper axonemal polyglutamylation remains unclear. He et al.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Agricultural and Forestry Biosecurity, Fujian Agricultural and Forestry University, Fuzhou 350002, China.
is a significant agricultural pest primarily affecting Solanaceae plants, resulting in substantial economic losses in agriculture. Insect saliva is an intermediary between insects and plants, playing a crucial role in modulating host adaptability and plant defense. This study analyzed the adaptive differences of on four plants using the two-sex life table method.
View Article and Find Full Text PDFAnal Chem
January 2025
The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
CD28 is a costimulatory receptor that provides the second signal necessary for T-cell activation and is associated with diseases, including rheumatoid arthritis, asthma, and cancer. Targeting CD28 is crucial for both functional bioanalysis and therapeutic development. Molecular probes, particularly fluorescent probes, can enhance our understanding of CD28's cellular roles.
View Article and Find Full Text PDFClin Exp Optom
January 2025
Department of Ophthalmology, Dünyagöz Tunus Hospital, Ankara, Türkiye.
Clinical Relevance: Pseudoexfoliation syndrome (PXS) is a common age-related disorder associated with glaucoma and cataract. Despite its clinical importance, the pathogenesis of PXS is not yet fully understood.
Background: To evaluate levels of SCUBE-1 (signal peptide, CUB domain, and epidermal growth factor-like domain containing protein 1) in the serum and aqueous humour of patients with PXS in comparison with non-PXS controls.
J Biomed Mater Res A
January 2025
Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA.
Peptides are widely used in biomaterials due to their ease of synthesis, ability to signal cells, and modify the properties of biomaterials. A key benefit of using peptides is that they are natural substrates for cell-secreted enzymes, which creates the possibility of utilizing cell-secreted enzymes for tuning cell-material interactions. However, these enzymes can also induce unwanted degradation of bioactive peptides in biomaterials, or in peptide therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!