Environmental Influencers, MicroRNA, and Multiple Sclerosis.

J Cent Nerv Syst Dis

Kuwait Cancer Control Center, Ministry of Health, Shuwaikh, Kuwait.

Published: January 2020

Multiple sclerosis (MS) is a complex neurological disorder characterized by an aberrant immune system that affects patients' quality of life. Several environmental factors have previously been proposed to associate with MS pathophysiology, including vitamin D deficiency, Epstein-Barr virus (EBV) infection, and cigarette smoking. These factors may influence cellular molecularity, interfering with cellular proliferation, differentiation, and apoptosis. This review argues that small noncoding RNA named microRNA (miRNA) influences these factors' mode of action. Dysregulation in the miRNAs network may deeply impact cellular hemostasis, thereby possibly resulting in MS pathogenicity. This article represents a literature review and an author's theory of how environmental factors may induce dysregulations in the miRNAs network, which could ultimately affect MS pathogenicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971968PMC
http://dx.doi.org/10.1177/1179573519894955DOI Listing

Publication Analysis

Top Keywords

multiple sclerosis
8
environmental factors
8
mirnas network
8
environmental influencers
4
influencers microrna
4
microrna multiple
4
sclerosis multiple
4
sclerosis complex
4
complex neurological
4
neurological disorder
4

Similar Publications

Background: Dural arteriovenous fistulas (DAVFs) pose a significant health threat owing to their high misdiagnosis rate. Case reports suggest that DAVFs or related acute events may follow medication use; however, drug-related risk factors remain unclear. In clinical practice, the concomitant use of multiple drugs for therapy is known as "polypharmacy situations," further increasing the risk of drug-induced DAVF.

View Article and Find Full Text PDF

Background Multiple sclerosis is a chronic, progressive, disabling disease associated with a high rate of infection, evidence of chronic inflammation, and a high mortality rate. Abnormalities of serum cytokines and changes in the activity of inflammatory cells were associated with relapsing-remitting multiple sclerosis (MS-RR). This study aims to introduce new inflammatory ratios derived from hematological and lipid indices as discriminators of T-helper (Th)-1/Th-2 activity in RR-MS.

View Article and Find Full Text PDF

Demyelination, or the loss of myelin in the central nervous system (CNS) is a hallmark of multiple sclerosis (MS) and occurs in various forms of CNS injury and neurodegenerative diseases. The regeneration of myelin, or remyelination, occurs spontaneously following demyelination. The lysophosphatidylcholine (LPC)-induced focal demyelination model enables investigations into the mechanisms of remyelination, providing insight into the molecular basis underlying an evolving remyelinating microenvironment over a tractable time course.

View Article and Find Full Text PDF

Oligodendroglial lineage cells (OLCs) are critical for neuronal support functions, including myelination and remyelination. Emerging evidence reveals their active roles in neuroinflammation, particularly in conditions like Multiple Sclerosis (MS). This study explores the inflammatory translatome of OLCs during the early onset of experimental autoimmune encephalomyelitis (EAE), an established MS model.

View Article and Find Full Text PDF

Epstein-Barr Virus (EBV) infects over 95% of the world's population and is the most common cause of infectious mononucleosis (IM). Epidemiologic studies have linked EBV with certain cancers or autoimmune conditions, including multiple sclerosis (MS). Recent studies suggest that molecular mimicry between EBV proteins, particularly EBV nuclear antigen 1 (EBNA-1), and self-proteins is a plausible mechanism through which EBV infection may contribute to the development of autoimmune disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!