We report here the first rational synthesis of 5,10-diazaporphyrins via nucleophilic substitution reactions of α,α'-dibromotripyrrin. Uses of 1,3-diiminoisoindoline and 3,4-di(ethylsulfanyl)pyrrole-2,5-diimine as nucleophiles allowed for synthesis of 5,10-diazabenzoporphyrin () and 5,10-diaza-7,8-di(ethylsulfanyl)porphyrin (3). 3 was reduced to 5,10-diazaporphyrin (), 5,10-diaza-2,3-dihydrogenated porphyrin (), and 5,10-diaza-7,8-dihydrogenated porphyrin () with yields that were dependent upon reduction conditions. All the structures of these products were confirmed by X-ray crystallographic analysis. Their optical and electrochemical properties have been comparatively studied with those of 5,15-diazaporphyrin () and 5,15-diazachlorin (). Furthermore, NH tautomers of and were observed as different species in solution, and the dynamic NH tautomeric behavior was studied in .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.9b03467 | DOI Listing |
Cell Death Dis
January 2025
Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
Epithelial-to-mesenchymal transition (EMT) is a critical and complex process involved in normal embryonic development, tissue regeneration, and tumor progression. It also contributes to retinal diseases, such as age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Although absent in melanoma 2 (AIM2) has been linked to inflammatory disorders, autoimmune diseases, and cancers, its role in the EMT of the retinal pigment epithelium (RPE-EMT) and retinal diseases remains unclear.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Department of Chemistry, University of California, Davis, CA, United States; Department of Molecular and Cellular Biology, University of California, Davis, CA, United States. Electronic address:
Adenosine deaminases acting on RNAs (ADARs) are a class of RNA editing enzymes found in metazoa that catalyze the hydrolytic deamination of adenosine to inosine in duplexed RNA. Inosine is a nucleotide that can base pair with cytidine, therefore, inosine is interpreted by cellular processes as guanosine. ADARs are functionally important in RNA recoding events, RNA structure modulation, innate immunity, and can be harnessed for therapeutically-driven base editing to treat genetic disorders.
View Article and Find Full Text PDFArch Biochem Biophys
January 2025
Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States; Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States. Electronic address:
The mitochondrial flavoenzymes proline dehydrogenase (PRODH) and hydroxyproline dehydrogenase (PRODH2) catalyze the first steps of proline and hydroxyproline catabolism, respectively. The enzymes are targets for chemical probe development because of their roles in cancer cell metabolism (PRODH) and primary hyperoxaluria (PRODH2). Mechanism-based inactivators of PRODH target the FAD by covalently modifying the N5 atom, with N-propargylglycine (NPPG) being the current best-in-class of this type of probe.
View Article and Find Full Text PDFEnzymatic asymmetric synthesis of l-phenylglycine by amino acid dehydrogenases has potential for industrial applications; however, this is hindered by their low catalytic efficiency toward high-concentration substrates. We identified and characterized a novel leucine dehydrogenase (LeuDH) with a high catalytic efficiency for benzoylformic acid via directed metagenomic approaches. Further, we obtained a triple-point mutant LeuDH-EER (D332E/G333E/L334R) with improved stability and catalytic efficiency through the rational design of distal loop 13.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
The Effective Fragment Potential (EFP) method, a polarizable quantum mechanics-based force field for describing non-covalent interactions, is utilized to calculate protein-ligand interactions in seven inactive cyclin-dependent kinase 2-ligand complexes, employing structural data from molecular dynamics simulations to assess dynamic and solvent effects. Our results reveal high correlations between experimental binding affinities and EFP interaction energies across all the structural data considered. Using representative structures found by clustering analysis and excluding water molecules yields the highest correlation (R2 of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!