A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Local Defects in Colloidal Quantum Dot Thin Films Measured via Spatially Resolved Multi-Modal Optoelectronic Spectroscopy. | LitMetric

Local Defects in Colloidal Quantum Dot Thin Films Measured via Spatially Resolved Multi-Modal Optoelectronic Spectroscopy.

Adv Mater

Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA.

Published: March 2020

The morphology, chemical composition, and electronic uniformity of thin-film solution-processed optoelectronics are believed to greatly affect device performance. Although scanning probe microscopies can address variations on the micrometer scale, the field of view is still limited to well under the typical device area, as well as the size of extrinsic defects introduced during fabrication. Herein, a micrometer-resolution 2D characterization method with millimeter-scale field of view is demonstrated, which simultaneously collects photoluminescence spectra, photocurrent transients, and photovoltage transients. This high-resolution morphology mapping is used to quantify the distribution and strength of the local optoelectronic property variations in colloidal quantum dot solar cells due to film defects, physical damage, and contaminants across nearly the entire test device area, and the extent to which these variations account for overall performance losses. It is found that macroscopic defects have effects that are confined to their localized areas, rarely prove fatal for device performance, and are largely not responsible for device shunting. Moreover, quantitative analysis based on statistical partitioning methods of such data is used to show how defect identification can be automated while identifying variations in underlying properties such as mobilities and recombination strengths and the mechanisms by which they govern device behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201906602DOI Listing

Publication Analysis

Top Keywords

colloidal quantum
8
quantum dot
8
device performance
8
field view
8
device area
8
device
6
local defects
4
defects colloidal
4
dot thin
4
thin films
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!