The total syntheses of dimeric indole alkaloids, haplophytine, and T988s are described. These dimeric compounds comprising two structurally different indole units are ubiquitous in nature, and many possess pharmaceutically important activities. To realize an efficient chemical synthesis of these dimeric indole alkaloids, the establishment of convergent synthetic strategies and development of new coupling methods are indispensable. The linkage of two highly functionalized units at a late stage of the synthesis frequently induces synthetic problems such as chemoselectivity and steric repulsion. Moreover, although transition metal-catalyzed reactions are usually an effective method for the cross-coupling of two units, the application of these cross-coupling reactions to bond formation involving a sterically hindered C(sp) is often difficult. Thus, even with precise modern synthetic methods, it is currently difficult to realize convergent syntheses of dimeric indole alkaloids possessing a quaternary carbon linking two units. To combat these synthetic problems, we developed a synthetic method to link two indole units using an Ag-mediated nucleophilic substitution reaction. In this review, we provide a detailed discussion of convergent synthetic strategies and coupling methods for dimeric indole alkaloids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/cpb.c19-00706 | DOI Listing |
J Nat Prod
January 2025
Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
A chemical investigation of the soil-derived fungus sp. XZ8 led to the isolation of five new indole alkaloids, trichindoles A-E (-), with diverse architectures, along with seven known analogues (-). Their structures were elucidated by extensive spectroscopic data analysis, and their absolute configurations were determined by single-crystal X-ray diffraction and modified Mosher's method.
View Article and Find Full Text PDFMolecules
December 2024
Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
The serine/threonine kinase CK2 (formerly known as casein kinase II) plays a crucial role in various CNS disorders and is highly expressed in various types of cancer. Therefore, inhibiting this key kinase could be promising for the treatment of these diseases. The CK2 holoenzyme is formed by the recruitment of two catalytically active CK2α and/or CK2α' subunits by a regulatory CK2β dimer.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Chemistry, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland.
This study investigates the structural, vibrational, and biological properties of novel palladium(II) and platinum(II) complexes with 5-chloro-7-azaindole-3-carbaldehyde (5ClL) and 4-chloro-7-azaindole-3-carbaldehyde (4ClL) ligands. Infrared and Raman spectroscopy, combined with DFT (ωB97X-D) calculations, provided valuable information about metal-ligand interactions, the or conformation of the aldehyde group in the ligands, and the presence of isomers in the metal complexes obtained in the solid state. tests were used to evaluate the antiproliferative activity of the novel complexes against several cancer cell lines, including ovarian cancer (A2780), cisplatin-resistant ovarian cancer (A2780cis), colon cancer (HT-29), and triple-negative breast cancer (MDA-MB-231), as well as normal mouse fibroblasts (BALB/3T3).
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
DtpC was isolated from the ditryptophenaline biosynthetic pathway found in filamentous fungi as a cytochrome P450 (P450) that catalyzes the dimerization of diketopiperazines. More recently, several similar P450s were discovered. While a vast majority of such P450s generate asymmetric diketopiperazine dimers, DtpC and other fungal P450s predominantly catalyze the formation of symmetric dimer products.
View Article and Find Full Text PDFChemistry
January 2025
Indian Institute of Technology Kharagpur, Chemistry, Paschim Midnapore, 721302, Kharagpur, INDIA.
All-carbon quaternary and tertiary stereocenters connected at the C2-position of functionalizable C3-alkylated indole nucleus are commonly occurring frameworks found in many indole alkaloids of medicinal importance. Their direct access is scarcely reported, a long-standing problem, and developing a unique yet simple method can pave the pathway to an entirely different retrosynthetic route for the total synthesis of these alkaloids. Herein, this problem is addressed by developing an unprecedented branch-selective allylation strategy employing a broad range of structurally and electronically different 3-alkenyl-indoles and allylboronic acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!