In Vivo Accumulation of Plastic-Derived Chemicals into Seabird Tissues.

Curr Biol

Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.

Published: February 2020

Plastic debris is ubiquitous and increasing in the marine environment [1]. A wide range of marine organisms ingest plastic, and its impacts are of growing concern [2]. Seabirds are particularly susceptible to plastic pollution because of high rates of ingestion [3]. Because marine plastics contain an array of hazardous compounds, the chemical impacts of ingestion are concerning. Several studies on wild seabirds suggested accumulation of plastic-derived chemicals in seabird tissues [4-7]. However, to date, the evidence has all been indirect [4-7], and it is unclear whether plastic debris is the source of these pollutants. To obtain direct evidence for the transfer and accumulation of plastic additives in the tissues of seabirds, we conducted an in vivo plastic feeding experiment. Environmentally relevant exposure of plastics compounded with one flame retardant and four ultraviolet stabilizers to streaked shearwater (Calonectris leucomelas) chicks in semi-field conditions resulted in the accumulation of the additives in liver and adipose fat of 91 to 120,000 times the rate from the natural diet. Additional monitoring of six seabird species detected these chemical additives only in those species with high plastic ingestion rates, suggesting that plastic debris can be a major pathway of chemical pollutants into seabirds. These findings provide direct evidence of seabird exposure to plastic additives and emphasize the role of marine debris ingestion as a source of chemical pollution in marine organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2019.12.037DOI Listing

Publication Analysis

Top Keywords

plastic debris
12
plastic
9
accumulation plastic-derived
8
plastic-derived chemicals
8
chemicals seabird
8
seabird tissues
8
marine organisms
8
direct evidence
8
plastic additives
8
marine
5

Similar Publications

With the global population surpassing 8 billion, waste production has skyrocketed, leading to increased pollution that adversely affects both terrestrial and marine ecosystems. Public littering, a significant contributor to this pollution, poses severe threats to marine life due to plastic debris, which can inflict substantial ecological harm. Additionally, this pollution jeopardizes human health through contaminated food and water sources.

View Article and Find Full Text PDF

A Comprehensive Modeling of Microplastic Emission from Wastewater Treatment Plants to the Sea via Rivers in China.

Environ Sci Technol

January 2025

Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.

Wastewater treatment plants (WWTPs) are significant sources of microplastic (MP) emissions. In order to quantify the potential MP emission from WWTPs, a database of more than 10,000 WWTPs in China with an estimated MP emission rate was built. The MP riverine retention after emission was also estimated based on Stokes' law for both fragments and fibers.

View Article and Find Full Text PDF

Concentrations of microplastics are both temporally and spatially variable in streamflow. Yet, an overwhelming number of published field studies do not target a range of flow conditions and fail to adequately capture particle transport within the full flow field. Since microplastic flux models rely on the representativeness of available data, current predictions of riverine exports contain substantial error.

View Article and Find Full Text PDF

The plastisphere, defined as the ecological niche for microbial colonization of plastic debris, has been recognized as a hotspot of pathogenic and antibiotic-resistant bacteria. However, the interactions between bacteria and phages facilitated by the plastisphere, as well as their impact on microbial risks to public health, remain unclear. Here, we analyzed public metagenomic data from 180 plastisphere and environmental samples, stemming from four different habitats and two plastic types (biodegradable and nonbiodegradable plastics) and obtained 611 nonredundant metagenome-assembled genomes (MAGs) and 4061 nonredundant phage contigs.

View Article and Find Full Text PDF

Since the widespread usage of plastic materials and inadequate handling of plastic debris, nanoplastics (NPs) and microplastics (MPs) have become global hazards. Recent studies prove that NPs/MPs can induce various toxicities in organisms, with these adverse effects closely related to gut microbiota changes. This review thoroughly summarized the interactions between NPs/MPs and gut microbiota in various hosts, speculated on the potential factors affecting these interactions, and outlined the impacts on hosts' health caused by NPs/MPs exposure and gut microbiota dysbiosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!