Hydrophilic Interaction Liquid Chromatography (HILIC) is a technique for retaining polar analytes that uses polar stationary phases and acetonitrile-rich mobile phases. While this technique has several advantages over reversed-phase liquid chromatography (RPLC), one main drawback is the reported need for longer column equilibration. The reason for this is not fully understood and is a topic of current investigation. In order to better understand and reduce the equilibration needs, accurate characterization of column equilibration under varying conditions is required. The current method of characterizing HILIC column equilibration produces limited data points per test, or low time resolution, and is highly dependent on the column and probe compounds being used. There is a need for an improved method for characterizing HILIC column equilibration, especially if trends across stationary phases are to be observed. In this work, MISER, or Multiple Injections in a Single Experimental Run, is evaluated as a possible tool for characterizing HILIC column equilibration. MISER improves time resolution by allowing for replicate injections without interruption of data collection, enabling a more thorough evaluation of column equilibration compared to traditional techniques. Experimental results gathered using MISER show that equilibration of a BEH Amide column is notably shorter when equilibrating from acetonitrile to mobile phases containing higher percentages of water. Column equilibration to a 10% aqueous mobile phase was found to be approximately 5-fold faster than equilibration to a 3% aqueous mobile phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2020.460931 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!