Heterobasidion viruses have previously been shown to affect each other's transmission and phenotypic effects on their hosts in a complex way. In this work, Heterobasidion parviporum strains hosting five coinfecting viruses simultaneously were constructed and used as donors in transmission experiments. They showed that viruses move more frequently between the mycelia of the same species than between the mycelia of H. parviporum and Heterobasidionannosum. One of the strains was used to show that coinfection of five viruses is relatively unstable in a natural environment and analyses of the growth rate and competitive ability of Heterobasidion strains hosting various virus combinations revealed that viral effects are not additive. The results also supported the view that the transmission of the promising virocontrol agent HetPV13-an1 may be enhanced by coinfecting viruses in the donor mycelium. However, its detrimental effects may be blocked by the presence of other viruses in the same mycelium. REPOSITORIES: GenBank accession number MN058080.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.funbio.2019.12.004 | DOI Listing |
Sci Rep
January 2025
College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China.
Recently, a new bacterial disease was detected on cucumber stalks. In order to study the pathogenesis of this disease, the pathogenic bacteria were isolated and identified on the basis of morphological and molecular characteristics, and further analyzed for pathogenicity and antagonistic evaluation. Pathogenicity analysis showed that HlJ-3 caused melting decay and cracking in cucumber stems, and the strain reisolated from re-infected cucumber stalks was morphologically identical to HlJ-3 colonies, which is consistent with the Koch's postulates.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Department of Plant Protection, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran.
This study aimed to achieve two main objectives: first, to determine whether the virulence factors of symbiotic bacteria of entomopathogenic nematodes (EPNs) against insect hosts are cell-associated or secreted, and to shed light on the underlying mechanisms of pathogenicity; and second, to identify and evaluate the standalone pathogenicity of symbiotic bacteria associated with entomopathogenic nematodes against Tenebrio molitor. Three bacterial species, Xenorhabdus nematophila (A41, SC, A18 and SF), Photorhabdus kayaii, and P. thracensis, were isolated and characterized via phylogenetic analysis of 16S-rRNA and gyrB genes.
View Article and Find Full Text PDFBioresour Technol
January 2025
Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, Ghent, 9042, Belgium. Electronic address:
Abundant biomass, including industrial waste streams and second-generation (2G) and third-generation (3G) feedstocks, offers significant potential for sustainable bioconversion, nevertheless challenges such as fermentation inhibitors, CO losses and substrate selectivity of traditional microbial hosts hinder process efficiency. In this study, we address these challenges by exploring acetogenic bacteria as alternative microbial hosts. Using a newly established high-throughput method, acetogens were evaluated for their capacity to hydrolyse and metabolise variety of substrates derived from 2G and 3G feedstocks and industrial waste streams.
View Article and Find Full Text PDFNat Commun
January 2025
Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
Genomics is a cornerstone of modern pathogen epidemiology yet demonstrating transmission in a One Health context is challenging, as strains circulate and evolve within and between diverse hosts and environments. To identify phylogenetic linkages and better define relevant measures of genomic relatedness in a One Health context, we collated 5471 Escherichia coli genome sequences from Australia originating from humans (n = 2996), wild animals (n = 870), livestock (n = 649), companion animals (n = 375), environmental sources (n = 292) and food (n = 289) spanning over 36 years. Of the 827 multi-locus sequence types (STs) identified, 10 STs were commonly associated with cross-source genomic clusters, including the highly clonal ST131, pandemic zoonotic lineages such as ST95, and emerging human ExPEC ST1193.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
Microbiological Sciences Department, North Dakota State University, Fargo, North Dakota, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!