We compared the electrical conductivity from two different aggregates of whey protein concentrates (WPC) film: conventional amorphous aggregation at natural pH (pH 6.5) and amyloid fibrils at a low pH (pH 2.0) far away from the isoelectric point. The two types of film fabricated by these solutions with different aggregate structures showed large variations in electrical conductivity and other properties. The WPC fibril film (pH 2.0) exhibited higher electrical conductivity than that of the conventional WPC film (pH 6.5), improved mechanical properties and oil resistance, due to varying morphology, higher surface hydrophobicity and more (absolute value) surface charge of film-forming solutions. The evidence from this study suggests that fibrilized WPC with high-ordered and β-sheets-rich structures fabricated high electrical conductivity film, which broadens the potential application of fibrils as functional bio-nanomaterials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0022029919000876 | DOI Listing |
J Am Chem Soc
January 2025
Research Center for Solar Energy Chemistry and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan.
Photocatalytic transformation of nitrate (NO) in wastewater into ammonia (NH) is a challenge in the detoxification and recycling of limited nitrogen resources. In particular, previously reported photocatalysts cannot promote the reaction using water as an electron donor. Herein, we report that copper-doped titanium dioxide (Cu-TiO) powders, prepared via the sol-gel method and subsequent calcination, promote NO-to-NH reduction in water.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea.
Carbon nanotubes (CNTs) produced by the floating-catalyst chemical vapor deposition (FCCVD) method are among the most promising nanomaterials of today, attracting interest from both academic and industrial sectors. These CNTs exhibit exceptional electrical conductivity, optical properties, and mechanical resilience due to their binder-free and low-defect structure, while the FCCVD method enables their continuous and scalable synthesis. Among the methodological FCCVD variations, aerosol CVD' is distinguished by its production of freestanding thin films comprising macroscale CNT networks, which exhibit superior performance and practical applicability.
View Article and Find Full Text PDFSmall
January 2025
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Owing to the nanoscale thickness, excellent mechanical and chemical stabilities, 2D materials including graphene and hexagonal boron nitride have emerged as promising artificial solid electrolyte interphase (SEI) candidates for lithium metal batteries. However, whether the implementation of 2D materials is beneficial to electrochemical performance remains controversial, and the key to confining the electroplated Li beneath the 2D materials remains elusive. Here, a nanocrystalline graphene (NG) film is synthesized on high-carbon Cu and the Li plating/stripping behavior on Cu grown with different 2D materials is investigated.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Zoological Sciences, Addis Ababa University, 1176, Addis Ababa, Ethiopia.
Nutrients in an aquatic system determine productivity, integrity and ecological status of the aquatic system. However, the excessive enrichment of these nutrients emanating from severe anthropogenic activity has substantially impacted water quality and biodiversity. There is diminutive information available on the water quality and trophic status of the northern Gulf of Lake Tana, Ethiopia due to accessibility difficulties.
View Article and Find Full Text PDFHeliyon
January 2025
Sharif Institute of Energy, Water and Environment, Sharif University of Technology, Azadi Avenue, P.O.Box11365-9465, Tehran, Iran.
Manganese dioxide (MnO) is a well-known pseudocapacitive material that has been extensively studied and highly regarded, especially in supercapacitors, due to its remarkable surface redox behavior, leading to a high specific capacitance. However, its full potential is impeded by inherent characteristics such as its low electrical conductivity, dense morphology, and hindered ionic diffusion, resulting in limited rate capability in supercapacitors. Addressing this issue often requires complicated strategies and procedures, such as designing sophisticated composite architectures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!