Activation of TLRs mediated the NF-κB signaling pathway plays an important pathophysiological role in cardiac hypertrophy. Triad3A, a ubiquitin E3 ligase, has been reported to negatively regulate NF-κB activation pathway via promoting ubiquitination and degradation of TLR4 and TLR9 in innate immune cells. The role of Triad3A in cardiac hypertrophic development remains unknown. The present study investigated whether there is a link between Triad3A and TLR4 and TLR9 in pressure overload induced cardiac hypertrophy. We observed that Triad3A levels were markedly reduced following transverse aortic constriction (TAC) induced cardiac hypertrophy. Similarly, stimulation of neonatal rat cardiac myocytes (NRCMs) with angiotensin-II (Ang II) significantly decreased Triad3A expression. To determine the role of Triad3A in TAC-induced cardiac hypertrophy, we transduced the myocardium with adenovirus expressing Triad3A followed by induction of TAC. We observed that increased expression of Triad3A significantly attenuated cardiac hypertrophy and improved cardiac function. To investigate the mechanisms by which Triad3A attenuated cardiac hypertrophy, we examined the Triad3A E3 ubiquitination on TLR4 and TLR9. We found that Triad3A promoted TLR4 and TLR9 degradation through ubiquitination. Triad3A mediated TLR4 and TLR9 degradation resulted in suppression of NF-κB activation. Our data suggest that Triad3A plays a protective role in the development of cardiac hypertrophy, at least through catalyzing ubiquitination-mediated degradation of TLR4 and TLR9, thus negatively regulating NF-κB activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00395-020-0779-1 | DOI Listing |
Front Genet
January 2025
Human Genetics Department, School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador.
Background: Delays in diagnosing rare genetic disorders often arise due to limited awareness and systemic challenges in primary care. This case highlights the importance of a holistic approach to patient care, encompassing timely detection and comprehensive evaluation of clinical features.
Methods: We report the case of a 21-year-old Ecuadorian male with facial and hand dysmorphias, cardiomegaly, pulmonary hypertension, and patent ductus arteriosus (PDA).
Front Endocrinol (Lausanne)
January 2025
Department of Endocrinology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China.
Objective: Recent studies have underscored the metabolic and cardiovascular regulatory capacity of perirenal adipose tissue (PAT), implicating its potential involvement in the pathogenesis of left ventricular hypertrophy (LVH). This investigation aims to assess the relationship between increased PAT mass and LVH, while also examining the potential mediating role of insulin resistance in this relationship among individuals with type 2 diabetes mellitus (T2DM).
Method: 1112 individuals with T2DM were prospectively recruited for this study.
Front Endocrinol (Lausanne)
January 2025
Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China.
Cardiac hypertrophy is an adaptive response to pressure or volume overload such as hypertension and ischemic heart diseases. Sustained cardiac hypertrophy eventually leads to heart failure. The pathophysiological alterations of hypertrophy are complex, involving both cellular and molecular systems.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
Objectives: The close relationship of proto-oncogenes to myocardial hypertrophy has long been recognized, and cardiac hypertrophy leads to heart failure (HF). However, whether proviral insertion of Moloney virus 3 kinase (Pim3), a proto-oncogene, contributes to cardiac hypertrophy in diabetes mellitus (DM) remains unknown. This study aims to investigate whether Pim3 is involved in DM-induced cardiac hypertrophy and HF and to elucidate its underlying mechanisms.
View Article and Find Full Text PDFCardiol Young
January 2025
Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
Hypertensive heart disease and hypertrophic cardiomyopathy both lead to left ventricular hypertrophy despite differing in aetiology. Elucidating the correct aetiology of the presenting hypertrophy can be a challenge for clinicians, especially in patients with overlapping risk factors. Furthermore, drugs typically used to combat hypertensive heart disease may be contraindicated for the treatment of hypertrophic cardiomyopathy, making the correct diagnosis imperative.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!