As quantitative analysis of biotherapeutics in cerebrospinal fluid (CSF) with LC-MS becomes increasingly widespread, there is a need for method developments towards higher sensitivity. By using artificial CSF (aCSF) in the development phase, the consumption of costly and sparsely available CSF can be limited. The aCSF compositions tested here were made from various dilutions of bovine serum albumin (BSA) or rat plasma to mimic the total protein concentration found in CSF. Focusing on monoclonal antibodies, the aCSF was spiked with human immunoglobulin (hIgG) and prepared with the bottom-up analysis technique using LC-MS. Assuming that the composition of the aCSF would affect the digest, the response from aCSF matrices was compared with CSF from rat, monkey, and dog in terms of estimated sample concentration and matrix effects. The samples were spiked with hIgG in the range of 10 to 1000 ng/mL and volumes of 10 μL were transferred to sample preparation. The results indicate that BSA dilutions from 300 to 2000 μg/mL and rat plasma dilutions of 0.5-2% provide the most accurate concentration estimates when compared with rat CSF. 1000 μg/mL BSA did not produce significantly different concentration estimates for 500 ng/mL samples when compared with CSF from rat, monkey, and dog, and can therefore be used as aCSF for several different species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026242 | PMC |
http://dx.doi.org/10.1007/s00216-020-02403-3 | DOI Listing |
J Med Case Rep
January 2025
Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
Background: Idiopathic intracranial hypertension (IIH) is a condition where the pressure of the cerebrospinal fluid in the brain increases without a known cause. It typically affects adults but can also occur in adolescents and children, although it is less common. Numerous elements, including coagulopathy, have been documented in previous cases as potential etiological factors of IIH.
View Article and Find Full Text PDFBMC Neurol
January 2025
Faculty of Medicine, Department of Neurology, Al-Quds University, Jerusalem, Palestine.
Background: Vanishing white matter disease (VWMD) is a rare autosomal recessive leukoencephalopathy. It is typified by a gradual loss of white matter in the brain and spinal cord, which results in impairments in vision and hearing, cerebellar ataxia, muscular weakness, stiffness, seizures, and dysarthria cogitative decline. Many reports involve minors.
View Article and Find Full Text PDFMethods
January 2025
Noselab GmbH, Widenmayerstr. 27, 80538 Munich, Germany.
Background: Diagnostics for neurodegenerative diseases lack non-invasive approaches suitable for early-stage biochemical screening and routine examination of neuropathology. Biomarkers of neurodegenerative diseases pass through the brain-nose interface (BNI) and accumulate in nasal secretion. Sample collection from the brain-nose interface presents a compelling prospect as basis for a non-invasive molecular diagnosis of neuropathologies.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
First Operating Room, The First Hospital of Jilin University, Changchun, China. Electronic address:
Background: Certain peripheral proteins are believed to be involved in the development of Alzheimer's disease (AD), but the roles of other new protein biomarkers are still unclear. Current treatments aim to manage symptoms, but they are not effective in stopping the progression of the disease. New drug targets are needed to prevent Alzheimer's disease.
View Article and Find Full Text PDFBrain Res
January 2025
Department of Neurosurgery, Division of Functional and Integrative Medicine, Department of Neurosurgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
Laser speckle flowmetry (LSF) is a noninvasive tool for cerebral blood flow (CBF) measurement via a cranial bone window. LSF is influenced by various factors including the extent of removal of bone and dura mater and tissue wetness in the bone window. In this study, we aimed to characterize the effect of these conditions on LSF signals and identify optimal measurement conditions for CBF LSF measurements in rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!