The sources of supra-permafrost water and its hydrological effects were studied, based on the presence of stable isotopes in 562 samples collected in different ablation periods from the source regions of the Yangtze River. The δO (δD and d-excess) values for the initial ablation, ablation, and end ablation periods were -10.18‰ (-71.39‰ and 10.08‰), -12.14‰ (-85.58‰ and 11.51‰) and -11.50‰ (-78.75‰ and 13.23‰), respectively. The order of the slopes for the supra-permafrost water evaporation lines from the different ablation periods was initial ablation (IA) > ablation (A) > end ablation (EA). An anti-altitude effect is documented here, for a specific altitude range, in what is believed to be the first record of such an occurrence. Outside of that range, clear altitude effects were apparent. We have been able to show that supra-permafrost water was mainly recharged by atmospheric precipitation, ground ice, and glacier and snow meltwater, in the initial ablation and end ablation periods, and contributions from glacier and snow meltwater were mainly concentrated in higher altitude regions. In contrast, in the ablation period, supra-permafrost water was mainly recharged by atmospheric precipitation and ground ice. The contributions of precipitation to supra-permafrost water were 78.79%, 85.47%, and 82.99% in the initial ablation, ablation, and end ablation periods, respectively. The contributions of ground ice to the supra-permafrost water were 14.05%, 14.53%, and 11.94%, respectively, while contributions of glacier and snow meltwater were 7.15% and 5.07% in the initial and end ablation period. For the initial ablation, ablation, and end ablation periods, contributions from atmospheric precipitation to the supra-permafrost water were 85.47%, 86.86%, and 86.84%, while contributions from ground ice were 14.53%, 13.14% and 13.16%, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.136911 | DOI Listing |
J Environ Manage
April 2024
Observation and Research Station of Eco-Hydrology and National Park by Stable Isotope Tracing in Qilian Mountains/Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
Due to the continuous degradation (gradual thawing) of permafrost, supra-permafrost water has become an important component of runoff that occurs in cold regions. However, current research has only focused on the amount of water provided by permafrost, and little has been reported regarding the source and formation mechanisms of supra-permafrost water. Due to the difficulty of observation and sampling in cold regions and insufficient data accumulation, model simulations face various difficulties in regard to solving problems related to hydrological processes.
View Article and Find Full Text PDFSci Total Environ
April 2024
Department of Earth Sciences, University of Kashmir, 190006, India.
Upper Indus Basin (UIB), being climatologically sensitive and socio-economically important, has emerged as a hotspot for eco-hydrological studies. Permafrost, one of the essential components of the regional hydrological cycle with a critical role in microclimate, is also an important water resource in the UIB. Despite being an important component of the cryospheric system, permafrost is least studied in the UIB.
View Article and Find Full Text PDFJ Environ Manage
September 2023
Observation and Research Station of Eco-Hydrology and National Park By Stable Isotope Tracing in Alpine Region/ Gansu Qilian Mountains Ecology Research Center/ Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
Drastic changes in the cryosphere have a significant impact on the quantity and formation process of water resources in the Qilian Mountains. The present study focused on quantitative evaluation of runoff components and runoff formation processes during strong ablation periods (August), in 2018, 2020, and 2021, in the transition zone between endorheic and exorheic basins in China, based on 1906 stable isotope samples. The results revealed that as the altitude decreased, the contribution of glacier and snow meltwater and permafrost water to runoff decreased, whereas that of the precipitation increased.
View Article and Find Full Text PDFSci Total Environ
March 2023
School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, USA.
The Source Area of the Yellow River (SAYR) on the Northeastern Qinghai-Tibet Plateau (QTP) stores substantial amounts of ground ice, which plays a significant role in understanding the hydrological processes and past permafrost evolution on the QTP. However, little is known about the initial sources and controlling factors of the ground ice in the SAYR. In this study, for the first time, ground ice stable isotope data (δO, δD, and d-excess) are presented, along with cryostratigraphic information for nine sites is integrated into three cryostratigraphic units (palsa, thermo-gully, and lake-affected sites) in the central SAYR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!