Water recycling and reuse is of important value in water-using sectors like petrochemical industry. The aim of this research was to optimise the pre-treatment of petrochemical wastewater to undergo a further membrane treatment, with the final objective of water recycling within the same industry. Laboratory coagulation-flocculation tests prior to biological treatment were performed using Actiflo® Veolia commercial technology and an optimal coagulant dose of 30 mg/L ferric chloride was obtained. A bench-scale Moving Bed Biofilm Reactor (MBBR) system with two sequential reactors with working volumes of 5 L was filled with Z-carriers at 35% of their working volume. Organic loading rate (OLR) was varied from 0.2 to 3.25 kg/(m d) and the hydraulic retention time (HRT) ranged from 23.4 h to 4.5 h. High soluble chemical oxygen demand (sCOD) removals were obtained in stationary states (80-90%) and the calculated maximum sCOD that the system could degrade was 4.96 ± 0.01 kg/(m d) at 23 ± 2 °C. Changes in feed composition did not decrease sCOD removals showing that MBBR is a robust technology and the coagulation-flocculation step could be by-passed. Further removal of total suspended solids (TSS) and turbidity from the MBBR effluent would be required before a reverse osmosis (RO) step could be performed. A biofilm-forming genus, Haliscomenobacter spp., and an oil degrading genus Flavobacterium spp. were found in all the attached biomass samples. Acinetobacter spp. was the major bacterial genera found in suspended biomass. Proteobacteria and Bacteroidetes were the major phyla detected in the carrier samples while Proteobacteria the main one detected in the suspended biomass. The lack of fungal annotated sequences in databases led to a major proportion of fungal sequences being categorized as unclassified Fungi. The results obtained indicate that MBBR is an appropriate technology for hydrocarbon-degrading microorganism growth and, thus, for petrochemical wastewater pre-treatment for water regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.136800 | DOI Listing |
Nat Commun
January 2025
Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China.
Achieving a synergy of biocompatibility and extreme environmental adaptability with excellent mechanical property remains challenging in the development of synthetic materials. Herein, a "bottom-up" solution-interface-induced self-assembly strategy is adopted to develop a compressible, anti-fatigue, extreme environment adaptable, biocompatible, and recyclable organohydrogel composed of chitosan-lignosulfonate-gelatin by constructing noncovalent bonded conjoined network. The ethylene glycol/water solvent induced lignosulfonate nanoparticles function as bridge in chitosan/gelation network, forming multiple interfacial interactions that can effectively dissipate energy.
View Article and Find Full Text PDFChemosphere
December 2024
Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan, ROC; Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan 33323, Taiwan, ROC; Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan, ROC. Electronic address:
Large amounts of wastewater are produced from semiconductor manufacturing, and the production energy consumption has skyrocketed with its global demand in recent years. Forward osmosis (FO) provides unique merits in reclaiming the wastewater if suitable draw solutes with high water flux, low leakage, and limited energy requirement in regeneration are available. Two lower critical solution temperature-ionic liquids (LCST-ILs), tetrabutylphosphonium trimethylbenzensulfonate ([P][TMBS]) and tetrabutylphosphonium maleate ([P][Mal]) were synthesized and systematically assessed as recycled draw solutes in FO for the water reclamation from the wastewater of Si-ingot sawing.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea. Electronic address:
Industrial wastes, including dyes and other chemicals, are significant sources of water pollution. The adsorption process is often explored in water purification. However, developing low-cost, sustainable adsorbents with good dye removal capacity remains challenging.
View Article and Find Full Text PDFBioresour Technol
December 2024
School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China. Electronic address:
Food Chem
December 2024
Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; Xinjiang Uygur Autonomous Region Saihu Fishery Science and Technology Development Company Limited, Bortala Mongol Autonomous Prefecture, 833500, China. Electronic address:
A novel Pickering interfacial biocatalysis (PIB) system has been, for the first time, successfully applied for the enzymatic selective hydrolysis of algae oils and fish oils to enrich n-3 PUFAs glycerides. Lipase AY 400SD was identified and adsorbed on hydrophobic hollow core-shell silica nanoparticles, resulting in the formation of the immobilized enzyme AY 400SD@HMSS-C. The biocatalyst was employed as an emulsifier to stabilize the water-in-oil Pickering emulsion, resulting in the successful construction of the PIB system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!