The presence of persistent free radicals (PFR) in biochars may greatly broaden the application of biochars in pollution control, but may also cause negative impacts to the environment. Understanding the structural basis and the formation mechanisms of PFR is essential for a targeted biochar production and application. This study used rice straw (RS), a ubiquitous agricultural waste, to investigate the generation processes of PFR in relation to RS pyrolysis kinetics. Based on a detailed thermogravimetric (TG) and derivative thermogravimetric (DTG) analysis, the activation energy was calculated by Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) methods. This work combined pyrolysis kinetics analysis and solid particle characterization. Our results showed that lignin started to pyrolyze at a lower temperature than cellulose and hemicellulose. Lignin was the main factor for PFR generation. Chemical bond breaking contributed only slightly to PFR formation. The reconfiguration of the carbonaceous structures may be a more important contributor to PFR formation, while the cross-linking between different compositions and the interactions between the chemical compositions and inorganic minerals may play a significant role for PFR generation and stabilization in RS. This study provides useful theoretical basis to understand the thermal pyrolysis process of RS and the manipulation of biochar properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.136575 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
The electrocatalytic conversion of oxygen to hydrogen peroxide offers a promising pathway for sustainable energy production. However, the development of catalysts that are highly active, stable, and cost-effective for hydrogen peroxide synthesis remains a significant challenge. In this study, a novel polyacid-based metal-organic coordination compound (Cu-PW) was synthesized using a hydrothermal approach.
View Article and Find Full Text PDFMolecules
December 2024
Biochar Engineering & Technology Research Center of Liaoning Province, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China.
Molecules
December 2024
College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China.
Pyrolysis is recognized as a promising technology for waste plastics management. Although there have been many studies on pyrolysis of waste plastics, there is still a lack of in-depth research on the mechanism of synergistic effect between mixed plastics and the mechanism of product formation. In this paper, based on the pyrolysis characteristics of Polystyrene, Polyethylene, and mixed plastics (Polystyrene/Polyethylene), it is demonstrated that a synergistic effect exists in the co-pyrolysis of Polystyrene/Polyethylene and affects the pyrolysis behavior and pyrolysis products.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.
Chem Commun (Camb)
January 2025
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
Layered transition metal oxide (NaTMO) cathodes are considered highly appropriate for the practical applications of sodium-ion batteries (SIBs) owing to their facile synthesis and high theoretical capacity. Generally, the phase evolution behaviors of NaTMO during solid-state reactions at high temperature closely related to their carbon footprint, prime cost, and the eventual electrochemical properties, while the thermal stability in various desodiated states associated with wide temperature fluctuations are extremely prominent to the electrochemical properties and safety of SIB devices. Therefore, in this review, the influences of sintering conditions such as pyrolysis temperature, soaking time, and cooling rates on the phase formation patterns of NaTMO are summarized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!