Synergistic effect of mixing wheat straw and lignite in co-pyrolysis and steam co-gasification.

Bioresour Technol

Collaborative Innovation Center of Biomass Energy, Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Agricultural Ministry, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China.

Published: April 2020

Co-pyrolysis and steam co-gasification of wheat straw (WS) and lignite coal (LC) were studied in a tube furnace between 700 °C and 900 °C. Synergistic effect in co-pyrolysis is not always apparent. However, with the introduction of HO vapor, synergetic effect is more obvious. Gas volume generated by co-gasification was higher than the prediction in all cases. Meanwhile, temperature played an important role and had a linear relationship with the excess gas volume when it exceeded 800 °C. These findings can be explained by that sufficient HO vapor could enhance synergy according raising catalytic effect of alkali and alkaline earth metals (AAEMs), promoting free radical generated and increasing reactivity of half-chars. Moreover, co-gasification of WS and LC with several blending ratios were studied at 850 °C. It found HO vapor could promote free radical formation stronger with higher ratio of WS during co-gasification, thus showing an enhancing effect on the reactivity of WS-derived chars.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2020.122876DOI Listing

Publication Analysis

Top Keywords

wheat straw
8
straw lignite
8
co-pyrolysis steam
8
steam co-gasification
8
gas volume
8
free radical
8
co-gasification
5
synergistic mixing
4
mixing wheat
4
lignite co-pyrolysis
4

Similar Publications

Introduction: China is rich in straw resources. The utilization of straw in the cultivation of edible fungi partially resolves the resource conflicts between mushroom cultivation and forest industry and also contributes to environmental protection.

Methods: In this study, based on the technology of replacing wood by grass, the straw formula for mycelial culture of was optimized with Simplex-lattice method commonly used in mixture design.

View Article and Find Full Text PDF

In this research, 3-(trimethoxysilyl)propyl methacrylate (MPS) silane agent was applied to modify the extracted wheat straw (WS) cellulose as a natural biopolymer. Polyacrylonitrile (PAN) was attached to the MPS-modified WS (MPS-WS) via in-situ polymerization to form PAN-WS biocomposite. AO-WS amidoximated biocomposite adsorbent was synthesized through amidoxime reaction and the effects of different parameters including agitation speed, metal ion concentration, and adsorbent dosage on its efficiency of Pb(II) removal were investigated using the Taguchi experimental design method.

View Article and Find Full Text PDF

Polylactic acid (PLA) composites with high straw content face several challenges, primarily due to the inherent brittleness of straw and its poor compatibility with the polymer matrix. In this study, scanning electron microscopy (SEM) was used to analyze the microscopic structure of wheat straw chemically modified by NaOH and the silane coupling agent, and it was concluded that both treatments effectively removed waxes and silica from the surface of the straw, enhanced fiber roughness, and improved interfacial adhesion. Notably, the silane coupling agent treatment not only facilitated the formation of chemical bonds between the straw fibers and the PLA matrix but also filled the interfiber pores, significantly increasing the structural density.

View Article and Find Full Text PDF

The aim of fungal treatment of organic matter for ruminants is the improvement of its degradability. So far, such treatment appears to be time-consuming and improvement has been modest. In previous work, we observed within three white rot species that there is modest () or low ( and ) variation in fiber degradation in wheat straw during seven weeks of incubation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!