Recently, the technology for the remediation of Cr(VI) pollutant via bisulfite has been found to be effective for fast elimination of co-contaminants especially in acidic solution, where free radicals (i.e., sulfate and/or hydroxyl radicals) are proposed to act as dominant oxidants. Here, it was demonstrated that high-valent Cr intermediate played a primary role in the Cr(VI)/bisulfite system through applying methyl phenyl sulfoxide (PMSO) as a probe. PMSO was effectively transformed in the Cr(VI)/bisulfite system with appreciable generation of methyl phenyl sulfone (PMSO) product, while PMSO was oxidized by free radicals to hydroxylated and/or polymeric products rather than PMSO. The involvement of high-valent Cr species was further supported by the formation of O-labeled PMSO in O labeling experiments, where the incorporation of O from solvent water HO into PMSO was likely resulted from competitive oxygen exchange of Cr-oxo species with water. The relative contribution of high valent Cr species versus free radicals was evaluated based on the yield of PMSO, which was dependent on the solution chemistry such as [Cr(VI)]:[bisulfite] ratio and dissolved oxygen. This work advances the understanding of chromium chemistry involved in the Cr(VI)/bisulfite system. These findings have important implications on the application of this "waste control by waste" technology for environmental decontamination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.126000 | DOI Listing |
BMC Microbiol
January 2025
Department of Medical Microbiology and Immunology, Faculty of Medicine, Benha University, Benha, Egypt.
Background: Novel platforms using nanotechnology-based medicines have exponentially increased in our daily lives. The unique characteristics of metal oxide and noble metals nanoparticles make them suitable for different fields including antimicrobial agents, cosmetics, textiles, wound dressings, and anticancer drug carriers.
Methods: This study focuses on the biosynthesis of small-sized SNPs using exo-metabolites of Fusarium oxysporum via bioprocess optimization using Plackett-Burman (PBD) and central composite designs (CCD) while evaluating their multifaceted bioactivities.
Commun Biol
January 2025
Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA.
The transsulfuration (TSS) pathway is an alternative source of cysteine for glutathione synthesis. Little of the TSS pathway in antioxidant capacity in sickle cell disease (SCD) is known. Here, we evaluate the effects of TSS pathway activation through cystathionine beta-synthase (CBS) to attenuate reactive oxygen species (ROS) and ferroptosis stresses in SCD.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.
Background: Mitochondrial dysfunction and damage can result in the release of mitochondrial DNA (mtDNA) into the cytoplasm, which subsequently activates the cGAS-STING pathway, promoting the onset of inflammatory diseases. Various factors, such as oxidative stress, viral infection, and drug toxicity, have been identified as inducers of mitochondrial damage. This study aims to investigate the role of mtDNA as a critical inflammatory mediator in the pathogenesis of ketamine (KET)-induced cystitis (KC) through the cGAS-STING pathway.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Microtia is a congenital malformation characterized by underdevelopment of the external ear. While chondrocyte dysfunction has been implicated in microtia, the specific cellular abnormalities remain poorly understood. This study aimed to investigate mitochondrial dysfunction in microtia chondrocytes using single-cell RNA sequencing.
View Article and Find Full Text PDFNat Commun
January 2025
Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China.
Reactive oxygen species (ROS) is promising in cancer therapy by accelerating tumor cell death, whose therapeutic efficacy, however, is greatly limited by the hypoxia in the tumor microenvironment (TME) and the antioxidant defense. Amplification of oxidative stress has been successfully employed for tumor therapy, but the interactions between cancer cells and the other factors of TME usually lead to inadequate tumor treatments. To tackle this issue, we develop a pH/redox dual-responsive nanomedicine based on the remodeling of cancer-associated fibroblasts (CAFs) for multi-pronged amplification of ROS (ZnPP@FQOS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!