Rational design of heterojunctions using nanostructured materials is a useful strategy for achieving efficient interfacial charge separation in photovoltaics. Heterojunctions can be constructed between the organic ligands and the inorganic layers in two-dimensional perovskites, taking advantage of their highly programmable structures. Here, we investigate charge transfer and recombination at the interface between the thiophene-based semiconducting ligands and the lead halide inorganic sublattices using time-resolved photoluminescence and transient reflection spectroscopy in single two-dimensional perovskite crystals. These measurements demonstrate the charge transfer time around 10 ps and long-lived charge-separated state over the nanosecond time scale in two-dimensional ligand-perovskite heterostructures. The efficient charge transfer processes coupled with slow charge recombination suggest the potential for improving exciton dissociation and charge transport in two-dimensional perovskite solar cells.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5131801DOI Listing

Publication Analysis

Top Keywords

charge transfer
12
charge separation
8
two-dimensional ligand-perovskite
8
ligand-perovskite heterostructures
8
two-dimensional perovskite
8
charge
6
two-dimensional
5
long-lived charge
4
separation two-dimensional
4
heterostructures rational
4

Similar Publications

Heterojunctions, known for their decent separation of photo-generated electrons and holes, are promising for photocatalytic CO reduction. However, a significant obstacle in traditional post-assembled heterojunctions is the high interfacial barrier for charge transfer caused by atomic lattice mismatch at multiphase interfaces. Here, as research prototypes, the study creates a lattice-matched co-atomic interface within CsPbBr-CsPbBr polytypic nanocrystals (113-125 PNs) through the proposed in situ hybrid strategy to elucidate the underlying charge transfer mechanism within this unique interface.

View Article and Find Full Text PDF

Embedding techniques allow the efficient description of correlations within localized fragments of large molecular systems while accounting for their environment at a lower level of theory. We introduce FragPT2: a novel embedding framework that addresses multiple interacting active fragments. Fragments are assigned separate active spaces, constructed by localizing canonical molecular orbitals.

View Article and Find Full Text PDF

Dynamic random access memory (DRAM) has been a cornerstone of modern computing, but it faces challenges as technology scales down, particularly due to the mismatch between reduced storage capacitance and increasing OFF current. The capacitorless 2T0C DRAM architecture is recognized for its potential to offer superior area efficiency and reduced refresh rate requirements by eliminating the traditional capacitor. The exploration of two-dimensional (2D) materials further enhances scaling possibilities, though the absence of dangling bonds complicates the deposition of high-quality dielectrics.

View Article and Find Full Text PDF

Composite coatings reinforced with varying mass fractions of SiC particles were successfully fabricated on 316 stainless steel substrates via laser cladding. The phase compositions, elemental distribution, microstructural characteristics, hardness, wear resistance and corrosion resistance of the composite coatings were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Vickers hardness testing, friction-wear testing and electrochemical methods. The coatings have no obvious pores, cracks or other defects.

View Article and Find Full Text PDF

Photoelectrochemical sensors have been studied for glucose detection because of their ability to minimize background noise and unwanted reactions. Titanium dioxide (TiO), a highly efficient material in converting light into electricity, cannot utilize visible light. In this regard, we developed a nonenzymatic glucose sensor by using a simple one-step electrospinning technique to combine cupric oxide with TiO to create a heterojunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!