Acoustic feedback in hearing aids occurs due to the coupling between the hearing aid loudspeaker and microphones. In order to reduce acoustic feedback, adaptive filters are often used to estimate the feedback path. To increase the convergence speed and decrease the computational complexity of the adaptive algorithms, it has been proposed to split the acoustic feedback path into a time-invariant fixed part and a time-varying variable part. A key question of this approach is how to determine the fixed part. In this paper, two approaches are investigated: (1) a digital filter design approach that makes use of the signals of at least two hearing aid microphones and (2) a defined physical location approach using an electro-acoustic model and the signals of one hearing aid microphone and an additional ear canal microphone. An experimental comparison using measured acoustic feedback paths showed that both approaches enable one to reduce the number of variable part coefficients. It is shown that individualization of the fixed part increases the performance. Furthermore, the two approaches offer solutions for different requirements on the effort to a specific hearing aid design on the one hand and the effort during the hearing aid fitting on the other hand.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0000509 | DOI Listing |
Arch Rehabil Res Clin Transl
December 2024
Section of Neurorehabilitation, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
Nystagmus has various clinical manifestations, including downbeat, upbeat, and torsional types, each associated with distinct neurologic features. Current rehabilitative interventions focusing on fixation training and optical correction often fail to achieve complete resolution. When nystagmus coexists with fragile X-associated tremor/ataxia syndrome (FXTAS), functional impairments worsen, particularly affecting balance.
View Article and Find Full Text PDFJ Strength Cond Res
December 2024
Department of Human Performance and Health Education, Western Michigan University, Kalamazoo, Michigan.
Garner, C, Nachtegall, A, Roth, E, Sterenberg, A, Kim, D, Michael, T, and Lee, S. Effects of movement sonification auditory feedback on repetitions and brain activity during the bench press. J Strength Cond Res 38(12): 2022-2028, 2024-Auditory stimulation and feedback have been found to enhance aspects of motor performance such as motor learning, sense of agency, and movement execution.
View Article and Find Full Text PDFLang Speech
January 2025
Department of Educational Psychology, Leadership, & Counseling, Texas Tech University, USA.
Adapting one's speaking style is particularly crucial as children start interacting with diverse conversational partners in various communication contexts. The study investigated the capacity of preschool children aged 3-5 years ( = 28) to modify their speaking styles in response to background noise, referred to as noise-adapted speech, and when talking to an interlocutor who pretended to have hearing loss, referred to as clear speech. We examined how two modified speaking styles differed across the age range.
View Article and Find Full Text PDFJ Neurophysiol
December 2024
Yale Child Study Center, Yale School of Medicine, Yale University, New Haven, CT, USA.
Our knowledge of human sensorimotor learning and memory is predominantly based on the visuo-spatial workspace and limb movements. Humans also have a remarkable ability to produce and perceive speech sounds. We asked if the human speech-auditory system could serve as a model to characterize retention of sensorimotor memory in a workspace which is functionally independent of the visuo-spatial one.
View Article and Find Full Text PDFElife
December 2024
Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
Hearing involves analyzing the physical attributes of sounds and integrating the results of this analysis with other sensory, cognitive, and motor variables in order to guide adaptive behavior. The auditory cortex is considered crucial for the integration of acoustic and contextual information and is thought to share the resulting representations with subcortical auditory structures via its vast descending projections. By imaging cellular activity in the corticorecipient shell of the inferior colliculus of mice engaged in a sound detection task, we show that the majority of neurons encode information beyond the physical attributes of the stimulus and that the animals' behavior can be decoded from the activity of those neurons with a high degree of accuracy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!