Objective: Stimulation of the primary somatosensory cortex (S1) has been successful in evoking artificial somatosensation in both humans and animals, but much is unknown about the optimal stimulation parameters needed to generate robust percepts of somatosensation. In this study, the authors investigated frequency as an adjustable stimulation parameter for artificial somatosensation in a closed-loop brain-computer interface (BCI) system.

Methods: Three epilepsy patients with subdural mini-electrocorticography grids over the hand area of S1 were asked to compare the percepts elicited with different stimulation frequencies. Amplitude, pulse width, and duration were held constant across all trials. In each trial, subjects experienced 2 stimuli and reported which they thought was given at a higher stimulation frequency. Two paradigms were used: first, 50 versus 100 Hz to establish the utility of comparing frequencies, and then 2, 5, 10, 20, 50, or 100 Hz were pseudorandomly compared.

Results: As the magnitude of the stimulation frequency was increased, subjects described percepts that were "more intense" or "faster." Cumulatively, the participants achieved 98.0% accuracy when comparing stimulation at 50 and 100 Hz. In the second paradigm, the corresponding overall accuracy was 73.3%. If both tested frequencies were less than or equal to 10 Hz, accuracy was 41.7% and increased to 79.4% when one frequency was greater than 10 Hz (p = 0.01). When both stimulation frequencies were 20 Hz or less, accuracy was 40.7% compared with 91.7% when one frequency was greater than 20 Hz (p < 0.001). Accuracy was 85% in trials in which 50 Hz was the higher stimulation frequency. Therefore, the lower limit of detection occurred at 20 Hz, and accuracy decreased significantly when lower frequencies were tested. In trials testing 10 Hz versus 20 Hz, accuracy was 16.7% compared with 85.7% in trials testing 20 Hz versus 50 Hz (p < 0.05). Accuracy was greater than chance at frequency differences greater than or equal to 30 Hz.

Conclusions: Frequencies greater than 20 Hz may be used as an adjustable parameter to elicit distinguishable percepts. These findings may be useful in informing the settings and the degrees of freedom achievable in future BCI systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242113PMC
http://dx.doi.org/10.3171/2019.11.FOCUS19696DOI Listing

Publication Analysis

Top Keywords

stimulation frequency
12
stimulation
10
frequency
8
brain-computer interface
8
artificial somatosensation
8
stimulation frequencies
8
higher stimulation
8
accuracy
8
frequency greater
8
trials testing
8

Similar Publications

Background: Postoperative delirium (POD) is the most common neurological adverse event among elderly patients undergoing surgery. POD is associated with an increased risk for postoperative complications, long-term cognitive decline, an increase in morbidity and mortality as well as extended hospital stays. Delirium prevention and treatment options are currently limited.

View Article and Find Full Text PDF

Background: Advanced technologies are becoming increasingly accessible in rehabilitation. Current research suggests technology can increase therapy dosage, provide multisensory feedback, and reduce manual handling for clinicians. While more high-quality evidence regarding the effectiveness of rehabilitation technologies is needed, understanding of how to effectively integrate technology into clinical practice is also limited.

View Article and Find Full Text PDF

Infiltrating plasma cells maintain glioblastoma stem cells through IgG-Tumor binding.

Cancer Cell

December 2024

National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214000, China; Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China. Electronic address:

Glioblastoma is a highly aggressive primary brain tumor with glioblastoma stem cells (GSCs) enforcing the intra-tumoral hierarchy. Plasma cells (PCs) are critical effectors of the B-lineage immune system, but their roles in glioblastoma remain largely unexplored. Here, we leverage single-cell RNA and B cell receptor sequencing of tumor-infiltrating B-lineage cells and reveal that PCs are aberrantly enriched in the glioblastoma-infiltrating B-lineage population, experience low level of somatic hypermutation, and are associated with poor prognosis.

View Article and Find Full Text PDF

Objectives: Autonomic regulation has been identified as a potential regulator of pain via vagal nerve mediation, assessed through heart rate variability (HRV). Non-invasive vagal nerve stimulation (nVNS) and heart rate variability biofeedback (HRVB) have been proposed to modulate pain. A limited number of studies compare nVNS and HRVB in persons with chronic pain conditions.

View Article and Find Full Text PDF

Many experimental platforms for quantum science depend on state control via laser fields. Frequently, however, the control fidelity is limited by optical phase noise. This is exacerbated in stabilized laser systems where high-frequency phase noise is an unavoidable consequence of feedback.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!