Currently, studies of RNA/protein interactions occupy a prominent place in molecular biology and medicine. The structures of RNA-protein complexes may be determined by X-ray crystallography or NMR for further analyses. These methods are time-consuming and difficult due to the versatility and dynamics of the RNA structure. Furthermore, due to the need to solve the "phase problem" for each dataset in crystallography, crystallographic structures of RNA are still underrepresented. Structure determination of single ribonucleotide-protein complexes is a useful tool to identify the position of single-stranded RNA-binding sites in proteins. We describe here a structural approach that incorporates affinity measurement of a protein for various single ribonucleotides, ranking the RNA/protein complexes according to their stability. This chapter describes how to perform these measurements, including a perspective for the analysis of RNA-binding sites in protein and single-nucleotide crystal soaking.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-0278-2_17 | DOI Listing |
Genes Dev
January 2025
Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA;
The Rbfox proteins regulate alternative pre-mRNA splicing by binding to the RNA element GCAUG. In the nucleus, most of Rbfox is bound to the large assembly of splicing regulators (LASR), a complex of RNA-binding proteins that recognize additional RNA motifs. However, it remains unclear how the different subunits of the Rbfox/LASR complex act together to bind RNA and regulate splicing.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Molecular Genetics, Institute of Biology, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin 10115, Germany.
The chloroplast genome encodes key components of the photosynthetic light reaction machinery as well as the large subunit of the enzyme central for carbon fixation, Ribulose-1,5-bisphosphat-carboxylase/-oxygenase (RuBisCo). Its expression is predominantly regulated posttranscriptionally, with nuclear-encoded RNA-binding proteins (RBPs) playing a key role. Mutants of chloroplast gene expression factors often exhibit impaired chloroplast biogenesis, especially in cold conditions.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Medical University of Vienna, Center of Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanier Strasse, Vienna, Austria. Electronic address:
Adenosine to inosine deaminases acting on RNA (ADARs) enzymes are found in all metazoa. Their sequence and protein organization is conserved but also shows distinct differences. Moreover, the number of ADAR genes differs between organisms, ranging from one in flies to three in mammals.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, Asahidai, Nomicity, Ishikawa, Japan. Electronic address:
Site-directed RNA editing (SDRE) holds significant promise for treating genetic disorders resulting from point mutations. Gene therapy, for common genetic illnesses is becoming more popular and, although viable treatments for genetic disorders are scarce, stop codon mutation-related conditions may benefit from gene editing. Effective SDRE generally depends on introducing many guideRNA molecules relative to the target gene; however, large ratios cannot be achieved in the context of gene therapy applications.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Department of Chemistry, University of California, Davis, CA, United States; Department of Molecular and Cellular Biology, University of California, Davis, CA, United States. Electronic address:
Adenosine deaminases acting on RNAs (ADARs) are a class of RNA editing enzymes found in metazoa that catalyze the hydrolytic deamination of adenosine to inosine in duplexed RNA. Inosine is a nucleotide that can base pair with cytidine, therefore, inosine is interpreted by cellular processes as guanosine. ADARs are functionally important in RNA recoding events, RNA structure modulation, innate immunity, and can be harnessed for therapeutically-driven base editing to treat genetic disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!