Integrating Molecular Simulation and Experimental Data: A Bayesian/Maximum Entropy Reweighting Approach.

Methods Mol Biol

Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.

Published: January 2021

We describe a Bayesian/Maximum entropy (BME) procedure and software to construct a conformational ensemble of a biomolecular system by integrating molecular simulations and experimental data. First, an initial conformational ensemble is constructed using, for example, Molecular Dynamics or Monte Carlo simulations. Due to potential inaccuracies in the model and finite sampling effects, properties predicted from simulations may not agree with experimental data. In BME we use the experimental data to refine the simulation so that the new conformational ensemble has the following properties: (1) the calculated averages are close to the experimental values taking uncertainty into account and (2) it maximizes the relative Shannon entropy with respect to the original simulation ensemble. The output of this procedure is a set of optimized weights that can be used to calculate other properties and distributions of these. Here, we provide a practical guide on how to obtain and use such weights, how to choose adjustable parameters and discuss shortcomings of the method.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-0270-6_15DOI Listing

Publication Analysis

Top Keywords

experimental data
16
conformational ensemble
12
integrating molecular
8
bayesian/maximum entropy
8
experimental
5
molecular simulation
4
simulation experimental
4
data
4
data bayesian/maximum
4
entropy reweighting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!