Comparative Protein Structure Analysis with Bio3D-Web.

Methods Mol Biol

Department of Chemistry, Georgia State University, Atlanta, GA, USA.

Published: January 2021

Bio3D-web is an online application for the interactive analysis of sequence-structure-dynamics relationships in user-defined protein structure sets. Major functionality includes structure database searching, sequence and structure conservation assessment, inter-conformer relationship mapping and clustering with principal component analysis (PCA), and flexibility prediction and comparison with ensemble normal mode analysis (eNMA). Collectively these methods allow users to start with a single sequence or structure and characterize the structural, conformational, and internal dynamic properties of homologous proteins for which there are high-resolution structures available. Functionality is also provided for the generation of custom PDF, Word, and HTML analysis reports detailing all user-specified analysis settings and corresponding results. Bio3D-web is available at http://thegrantlab.org/bio3d/webapps , as a Docker image https://hub.docker.com/r/bio3d/bio3d-web/ , or downloadable source code https://bitbucket.org/Grantlab/bio3d-web .

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-0270-6_2DOI Listing

Publication Analysis

Top Keywords

protein structure
8
sequence structure
8
analysis
6
structure
5
comparative protein
4
structure analysis
4
analysis bio3d-web
4
bio3d-web bio3d-web
4
bio3d-web online
4
online application
4

Similar Publications

Background: High-temperature environment can cause acute kidney injury affecting renal filtration function. To study the mechanism of renal injury caused by heat stress through activates TLR4/NF-κB/NLRP3 signaling pathway by disrupting the filtration barrier in broiler chickens. The temperature of broilers in the TN group was maintained at 23 ± 1 °C, and the HS group temperature was maintained at 35 ± 1℃ from the age of 21 days, and the high temperature was 10 h per day, and one broiler from each replicate group at the age of 35 and 42 days was selected for blood sampling, respectively.

View Article and Find Full Text PDF

Background: Posttranslational modifications (PTMs) play critical roles in hepatocellular carcinoma (HCC). However, the locations of PTM-modified sites across protein secondary structures and regulatory patterns in HCC remain largely uncharacterized.

Methods: Total proteome and nine PTMs (phosphorylation, acetylation, crotonylation, ubiquitination, lactylation, N-glycosylation, succinylation, malonylation, and β-hydroxybutyrylation) in tumor sections and paired normal adjacent tissues derived from 18 HCC patients were systematically profiled by 4D-Label free proteomics analysis combined with PTM-based peptide enrichment.

View Article and Find Full Text PDF

HIF-1α mediates hypertension and vascular remodeling in sleep apnea via hippo-YAP pathway activation.

Mol Med

December 2024

Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China.

Background: Sleep apnea syndrome (SAS) is associated with hypertension and vascular remodeling. Hypoxia-inducible factor-1α (HIF-1α) and the Hippo-YAP pathway are implicated in these processes, but their specific roles remain unclear. This study investigated the HIF-1α/Hippo-YAP pathway in SAS-related hypertension.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) play crucial roles in numerous biological processes and are involved in complex human diseases through interactions with proteins. Accurate identification of lncRNA-protein interactions (LPI) can help elucidate the functional mechanisms of lncRNAs and provide scientific insights into the molecular mechanisms underlying related diseases. While many sequence-based methods have been developed to predict LPIs, efficiently extracting and effectively integrating potential feature information that reflects functional attributes from lncRNA and protein sequences remains a significant challenge.

View Article and Find Full Text PDF

Flavin adenine nucleotide (FAD)-dependent oxidoreductase enzyme Alcohol oxidase (AOX) facilitates the growth of methylotrophic yeast C. boidinii by catabolizing methanol, producing formaldehyde and hydrogen peroxide. Vacuolar Protease-A (PrA) from C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!