Achaete-scute complex (ASC) genes play essential roles in regulating neurogenesis of metazoans. Various metazoan species have greatly different numbers of genes in ASCa, ASCb and ASCc families. To explore evolutionary mechanisms of metazoan ASC genes, Blast (basic local alignment search tool) searches and phylogenetic analyses were conducted to identify ASC genes in metazoan species and to infer phylogenetic relationship between various ASC genes. As a result, 2784 ASC genes were identified in 804 metazoan species. The phylogenetic tree constructed using 1237 unique bHLH motifs shows that metazoan ASCa, ASCb and ASCc families contain six (a1-a6), five (b1-b5) and three (c1-c3) bHLH genes, respectively. Further phylogenetic analyses suggest that ASC genes in metazoans are derived from a primitive c gene, those in insects are derived from c2 gene, and those in chordates are derived from a2 and a3 genes. Data of gene linkage demonstrate that insect a6 is derived from a4 but not from a5, and chordate a2 is ancestral to b5 only, whilst a3 is ancestral to both b3 and b5. It is concluded that current ASC gene families in metazoans were established through a series of sub- and/or neo-functionalization to duplicated ancestral ASC gene(s). These results provide good references for exploring evolutionary mechanisms of other bHLH genes in metazoans. Besides, gene subtyping is considered as an efficient method for evolutionary studies on closely related homologous genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00438-020-01648-y | DOI Listing |
J Cachexia Sarcopenia Muscle
February 2025
Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.
Background: Inclusion body myositis (IBM) is the most prevalent muscle disease in adults for which no current treatment exists. The pathogenesis of IBM remains poorly defined. In this study, we aimed to explore the interplay between inflammation and mitochondrial dysfunction in IBM.
View Article and Find Full Text PDFPLoS One
December 2024
Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, United States of America.
The potential association of milk with childhood obesity has been widely debated and researched. Milk is known to contain many bioactive compounds as well as bovine exosomes rich in micro-RNA (miR) that can have effects on various cells, including stem cells. Among them, adipose stem cells (ASC) are particularly interesting due to their role in adipose tissue growth and, thus, obesity.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Otorhinolaryngology and Biomedical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital, Busan 50612, Republic of Korea.
Although adipose stem cell (ASC)-derived extracellular vesicles (EVs) are as effective as ASCs in the suppression of Th2 cell-mediated eosinophilic inflammation, the role of identified pulmonary genes has not been well documented. Thus, we assessed the immunomodulatory effects of paraoxonase-1 (PON1) on allergic airway inflammation in a mouse model of asthma. Five-week-old female C57BL/6 mice were sensitized to ovalbumin (OVA) by intraperitoneal injection and challenged intranasally with OVA.
View Article and Find Full Text PDFJ Biol Chem
December 2024
The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #54 Xianlie South Road, Guangzhou, Guangdong 510060, China. Electronic address:
Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) is one of the most important pathogenic mechanisms in lens fibrotic disorders, and the regulatory mechanisms of EMT have not been fully understood. Here, we demonstrate that the cAMP-response element binding protein (CREB) can regulate lens EMT in a phosphorylation-dependent and -independent manners with dual mechanisms. First, CREB-S133 phosphorylation is implicated in TGFβ-induced EMT of mouse LECs and also in injury-induced mouse anterior subcapsular cataract (ASC) model.
View Article and Find Full Text PDFPeerJ
December 2024
Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
Background: Cervical cancer remains a significant global health concern, ranking as the fourth most prevalent cancer among women worldwide. Human papillomaviruses (HPV) transcribe many genes that might be responsible for cervical cancer development. This study aims to investigate the correlation between the expression of HPV16 early genes and the mRNA expression of human FOXO3a, a tumor suppressor gene, in association with various stages of cervical precancerous lesions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!