Flowering is important for plant propagation and survival, and it is also closely related to human life. Identifying the molecular mechanisms underlying flower development is essential for plant improvement and breeding. Flower development is a complex physiological process that is regulated by multiple genes. LFY genes play important roles in the floral meristem transition and act as crucial integrators in regulating the floral gene network. Argyranthemum frutescens is an ornamental species cultivated for floral displays, yet little is known about molecular mechanisms driving its flower development. In this study, the LEAFY gene homologue, AfLFY, was identified and cloned from A. frutescens, and its role and expression patterns were characterized. Two distinct copies of AfLFY were found in the A. frutescens genome and both sequences contained a 1248 bp open reading frame that encoded 415 amino acids. The putative protein sequences have a typical LFY family domain. In addition, AfLFY was expressed at the highest levels in young leaves of the vegetative stage and in the shoot apical bud meristem of the reproductive stage. Phylogenetic analysis showed that AfLFY was most closely related to DFL from Chrysanthemum lavandulifolium. Subcellular localization studies revealed that AfLFY localized to the nucleus. Heterologous expression of AfLFY in transgenic tobacco plants shortened its period of vegetative growth, converted the lateral meristems into terminal flowers and promoted precocious flowering. In addition, transgenic plants exhibited obvious morphological changes in leaf shape. qRT-PCR analysis indicated that the expression levels genes related to flowering, FT, SOC1, and AP1 were significantly upregulated in AfLFY transgenic plants. Our findings suggested that the AfLFY gene plays a vital role in promoting flowering and leaf development in A. frutescens. These results laid a foundation for us to understand the mechanism of AfLFY in regulation flowering, and the results will be helpful in improving A. frutescens through molecular breeding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994665 | PMC |
http://dx.doi.org/10.1038/s41598-020-58570-x | DOI Listing |
J Tradit Complement Med
January 2025
Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
The medicinal value of herbal products is often rooted in their "traditional" use, recontextualized by modern biomedical research granting them certain medical uses. L. (Asteraceae), native to Mexico, exemplifies such historical developments of a species that played a key role in developing a major pharmacologically active compound - lutein.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Field Crops, Aydin Adnan Menderes University, Aydin, Türkiye.
Background: Salinity stress is a significant challenge in agriculture, particularly in regions where soil salinity is increasing due to factors such as irrigation practices and climate change. This stress adversely affects plant growth, development, and yield, posing a threat to the cultivation of economically important plants like . This study aims to evaluate the effectiveness by proactively applying indole-3-butyric acid (IBA) to cuttings as a practical and efficient method for mitigating the adverse effects of salinity stress.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
Background: Chinese cabbage is a cross-pollinated crop with remarkable heterosis, and male-sterile line is an important mean to produce its hybrids. In this study, a male-sterile mutant msm7 was isolated from a Chinese cabbage DH line 'FT' by using EMS-mutagenesis.
Results: Compared with the wild-type 'FT', the anthers of mutant msm7 were completely aborted, accompanied by the defects in leaf and petal development.
Plant Cell Rep
January 2025
Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia.
Cannabis trichome development progresses in distinct phases that underpin the dynamic biosynthesis of cannabinoids and terpenes. This study investigates the molecular mechanisms underlying cannabinoid and terpenoid biosynthesis in glandular trichomes of Cannabis sativa (CsGTs) throughout their development. Female Cannabis sativa c.
View Article and Find Full Text PDFTalanta
January 2025
Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, P.R. China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou, Guangdong, 515063, P.R. China; Analysis & Testing Center, Shantou University, Shantou, Guangdong, 515063, P.R. China. Electronic address:
CYFRA21-1 is a tumor marker for lung cancer, and its rapid and accurate detection can provide evidence for the early diagnosis of lung cancer. In this work, Bi-Fe turnbull blue analogues (Bi-Fe-TBA) were synthesized by the self-templating method. BiO-SFNs was prepared by simple oxidation in air using Bi-Fe-TBA as a template.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!