Bispecific antibodies come in many different formats, including the particularly interesting two-in-one antibodies, where one conventional IgG binds two different antigens. The IgG format allows these antibodies to mediate Fc-related functionality, and their wild-type structure ensures low immunogenicity and enables standard methods to be used for development. It is however difficult, time-consuming and costly to generate two-in-one antibodies. Herein we demonstrate a new approach to create a similar type of antibody by combining two different variable heavy (VH) domains in each Fab arm of an IgG, a tetra-VH IgG format. The VHs are used as building blocks, where one VH is placed at its usual position, and the second VH replaces the variable light (VL) domain in a conventional IgG. VH domains, binding several different types of antigens, were discovered and could be rearranged in any combination, offering a convenient "plug and play" format. The tetra-VH IgGs were found to be functionally tetravalent, binding two antigens on each arm of the IgG molecule simultaneously. This offers a new strategy to also create monospecific, tetravalent IgGs that, depending on antigen architecture and mode-of-action, may have enhanced efficacy compared to traditional bivalent antibodies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994471 | PMC |
http://dx.doi.org/10.1038/s41598-020-58150-z | DOI Listing |
J Clin Microbiol
January 2025
Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands.
Unlabelled: The World Health Organization (WHO) 2030 roadmap for schistosomiasis calls for development of highly sensitive and specific diagnostic tools to continue and sustain progress towards elimination. Serological assays are excellent for sensitive detection of primary schistosome infections and for schistosomiasis surveillance in near- and post-elimination settings. To develop accurate assay formats, it is necessary to identify defined antibody targets with low cross-reactivity and potential for standardized production.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China.
Glycosite-specific antibody-drug conjugates (gsADCs), which carry cytotoxic payloads at the conserved -glycosylation site, N297, of an IgG, have emerged as a promising ADC format with better therapeutic index. Conjugating the payloads aldehyde-based chemistry is more friendly to IgGs, and has been widely investigated. However, the efficiency of introducing an aldehyde tag at the N297 site is poor due to the complicated procedures required, such as the multiple-enzyme-catalyzed IgG glycoengineering process and the successive oxidation step, which always results in heterogeneous products and poor stability.
View Article and Find Full Text PDFNeurol Educ
December 2024
From the Department of Neurology, Mayo Clinic, Rochester, MN.
Background And Objectives: Neurology residents serve as frontline teachers for junior trainees but often lack formal training in medical education. We developed a novel longitudinal curriculum to enhance the teaching skills and educational leadership of residents interested in pursuing careers as clinician-educators.
Methods And Curriculum Description: We developed and piloted a Neurology Clinician-Educator Program (NCEP) with the following goals: (1) improve resident satisfaction with opportunities to develop teaching skills, (2) improve resident satisfaction with opportunities to transition into a clinician-educator role after training, and (3) enhance resident teaching skills using evidence-based strategies.
Int J Mol Sci
November 2024
Internal Medicine I, Saarland University Medical Center, 66421 Homburg, Germany.
ACS Appl Mater Interfaces
December 2024
Centre for Cell Factories and Biopolymers, Griffith Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD 4111, Australia.
Bacterial cell factories have been successfully engineered to efficiently assemble spherical polyhydroxybutyrate inclusions coated with functional proteins of interest. In these submicrometer-sized core-shell assemblies, proteins are bioconjugated to the polymer core, enabling bioengineering for uses as bioseparation resins, enzyme carriers, diagnostic reagents, and particulate vaccines. Here, we explore whether these functional protein-polymer assemblies could be restructured via dissolution and subsequent precipitation while retaining the functionality of the conjugated protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!